This paper presents a dataset of images generated via 3D graphics rendering. The dataset is composed by pictures of the junction between the high-speed shaft and the external bracket of the power generator inside a wind turbine cabin, in presence and absence of oil leaks. Oil leak occurrence is an anomaly that can verify in a zone of interest of the junction. Since the wind turbines industry is becoming more and more important, turbines maintenance is growing in importance accordingly. In this context a dataset, as we propose, can be used, for example, to design machine learning algorithms for predictive maintenance. The renderings have been produced, from various framings and various leaks shapes and colors, using the rendering engine Keyshot9. Subsequent preprocessing has been performed with Matlab, including images grayscale conversion and image binarization. Finally, data augmentation has been implemented in Python, and it can be easily extended/customized for realizing any further processing. The Matlab and Python source codes are also provided. To the authors’ knowledge, there are no other public available datasets on this topic.
Synthetic image dataset of shaft junctions inside wind turbines in presence or absence of oil leaks / Cardoni, M.; Pau, D.; Falaschetti, L.; Turchetti, C.; Lattuada, M.. - In: DATA IN BRIEF. - ISSN 2352-3409. - 39:(2021), p. 107538. [10.1016/j.dib.2021.107538]
Synthetic image dataset of shaft junctions inside wind turbines in presence or absence of oil leaks
Falaschetti L.;Turchetti C.;
2021-01-01
Abstract
This paper presents a dataset of images generated via 3D graphics rendering. The dataset is composed by pictures of the junction between the high-speed shaft and the external bracket of the power generator inside a wind turbine cabin, in presence and absence of oil leaks. Oil leak occurrence is an anomaly that can verify in a zone of interest of the junction. Since the wind turbines industry is becoming more and more important, turbines maintenance is growing in importance accordingly. In this context a dataset, as we propose, can be used, for example, to design machine learning algorithms for predictive maintenance. The renderings have been produced, from various framings and various leaks shapes and colors, using the rendering engine Keyshot9. Subsequent preprocessing has been performed with Matlab, including images grayscale conversion and image binarization. Finally, data augmentation has been implemented in Python, and it can be easily extended/customized for realizing any further processing. The Matlab and Python source codes are also provided. To the authors’ knowledge, there are no other public available datasets on this topic.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.