Cultural Heritage preservation requires the combination of in situ investigations and accurate Finite Elements models in order to correctly interpret the empirical evidence and successfully apply advanced structural analyses for health assessment purposes, allowing to infer about the future evolution of the structural response and timely detect deviations from the expected behaviour. In this paper the actual dynamic behaviour of the Civic Tower of Ostra, Italy, is thoroughly investigated by means of a detailed numerical model built and calibrated using the experimental modal features estimated through field dynamic testing. To this end, a fully automated Finite Element Model Updating procedure based on genetic algorithms and machine learning is conceived and employed, allowing the successful estimation of the unknown material properties of the tower, considering both isotropic and orthotropic behavioural models for masonry. The results enabled to establish baseline information on the current structural condition of the heritage and to set performance standards that will serve to optimise the control of the structural integrity over time.

Modal-based FE model updating via genetic algorithms: Exploiting artificial intelligence to build realistic numerical models of historical structures / Standoli, Gianluca; Salachoris, Georgios Panagiotis; Masciotta, Maria Giovanna; Clementi, Francesco. - In: CONSTRUCTION AND BUILDING MATERIALS. - ISSN 0950-0618. - STAMPA. - 303:(2021), pp. 1-41. [10.1016/j.conbuildmat.2021.124393]

Modal-based FE model updating via genetic algorithms: Exploiting artificial intelligence to build realistic numerical models of historical structures

Standoli, Gianluca;Salachoris, Georgios Panagiotis;Clementi, Francesco
2021-01-01

Abstract

Cultural Heritage preservation requires the combination of in situ investigations and accurate Finite Elements models in order to correctly interpret the empirical evidence and successfully apply advanced structural analyses for health assessment purposes, allowing to infer about the future evolution of the structural response and timely detect deviations from the expected behaviour. In this paper the actual dynamic behaviour of the Civic Tower of Ostra, Italy, is thoroughly investigated by means of a detailed numerical model built and calibrated using the experimental modal features estimated through field dynamic testing. To this end, a fully automated Finite Element Model Updating procedure based on genetic algorithms and machine learning is conceived and employed, allowing the successful estimation of the unknown material properties of the tower, considering both isotropic and orthotropic behavioural models for masonry. The results enabled to establish baseline information on the current structural condition of the heritage and to set performance standards that will serve to optimise the control of the structural integrity over time.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/291691
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 30
social impact