Inorganic scintillating crystals can be modelled as continua with microstructure. For rigid and isothermal crystals the evolution of charge carriers becomes in this way described by a reaction-diffusion-drift equation coupled with the Poisson equation of electrostatic. Here we give a survey of the available existence and asymptotic decays results for the resulting boundary value problem, the latter being a direct estimate of the scintillation decay time.We also show how to recover various approximated models which encompass also the two most used phenomenological models for scintillators, namely the Kinetic and Diffusive ones. Also for these cases we show, whenever it is possible, which existence and asymptotic decays estimate results are known to date.

A brief overview of existence results and decay time estimates for a mathematical modeling of scintillating crystals

F. Davi'
Primo
2021

Abstract

Inorganic scintillating crystals can be modelled as continua with microstructure. For rigid and isothermal crystals the evolution of charge carriers becomes in this way described by a reaction-diffusion-drift equation coupled with the Poisson equation of electrostatic. Here we give a survey of the available existence and asymptotic decays results for the resulting boundary value problem, the latter being a direct estimate of the scintillation decay time.We also show how to recover various approximated models which encompass also the two most used phenomenological models for scintillators, namely the Kinetic and Diffusive ones. Also for these cases we show, whenever it is possible, which existence and asymptotic decays estimate results are known to date.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11566/290710
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact