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Inorganic scintillating crystals can be modelled as continua with microstructure.
For rigid and isothermal crystals, the evolution of charge carriers becomes in
this way described by a reaction-diffusion-drift equation coupled with the Pois-
son equation of electrostatic. Here, we give a survey of the available existence
and asymptotic decays results for the resulting boundary value problem, the lat-
ter being a direct estimate of the scintillation decay time. We also show how
to recover various approximated models which encompass also the two most
used phenomenological models for scintillators, namely, the kinetic and diffu-
sive ones. Also for these cases, we show, whenever it is possible, which existence
and asymptotic decays estimate results are known to date.
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1 INTRODUCTION

A scintillator crystal is a material which converts ionizing radiations into photons in the frequency range of visible light,
hence its name. It acts as a true “wavelength shifter” and in such a role is used as radiation sensor into high-energy physics,
in medical imaging and in security applications.1 The physics of scintillation, which is a complex multi-scale phenomenon
(see, e.g., Vasil'ev and Getkin2) can be described within a continuum approach at three scales: at a microscopic scale,
the incoming energy E generates a population of charged energy carriers which moves in straight directions for few
nanometer3 and whose density N = N(E) can be found by the means of approximated solutions of the Bethe–Bloch
equation.4–7* These energy carriers wander and migrate within a greater region either generating other energy carriers
or recombining with emission of photons h𝜈. In the process, some energy is lost, and a scintillator is a material in which
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*In Daví,8 we show how the density of excitation carriers N induced by an ionizing energy E which hits the crystal at a given point x∗ can be obtained
by the means of a suitable rescaling to the mesoscopic scale of the approximate solutions of the Bethe–Bloch equation along an elementary cylindrical
track: in such a way N = N(E) maintains information on both the initial energy E and the material properties of the crystal.
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FIGURE 1 The mesoscopic scintillation region Ω [Colour figure
can be viewed at wileyonlinelibrary.com]

such a loss reduces the frequency of the incoming ionizing energy to that of visible light. We call this scale the mesoscopic
scale: for  , the region occupied by the crystal we denote Ω ⊂  the mesoscopic volume in which the recombination of
charge carriers into photons takes place (Figure 1). Finally the light rays propagate within the crystal at a Macroscopic
scale according to the laws of classical optics.

Scintillation is a fast and dissipative phenomenon, and there are two major physical parameters which are to be
improved in a scintillating material: (i) the decay time 𝜏d, which is the time required for scintillation emission to decrease
to e−1 of its maximum and is a measure of the scintillator resolution; (ii) the light yield LY, which is the ratio between
the collected light energy and the energy of the incoming ionizing radiation and which is a measure of the scintillator
efficiency.

Scintillators can be modelled as Continua with microstructure8–11 to arrive at a reaction-diffusion-drift (RDD) equation
for the energy carriers descriptors, coupled with the Poisson equation of electrostatic and both with Neumann-type bound-
ary conditions. Further in Daví,12 by following the results obtained in previous studies,13,14 we showed that for these
equations, it is possible to proof the global existence of renormalized and weak solutions and also how the decay time can
be estimated explicitly in terms of these equations constitutive parameters.

The continuum mechanics approach allows for a coherent thermodynamical treatment of the charge carriers evolution
and recombination at the mesoscopic scale. Sources of dissipation, constitutive couplings, the role of entropy, and entropic
contributions arises quite naturally within this framework and not as ad hoc assumptions based on physically similar
phenomena. There exists indeed an huge literature which describes, at the same scale, either the kinetic of chemical
reactions or the pair production and recombination in semiconductors; this is in turn associated to many recent and very
important mathematical results mainly concerned with the existence of various kind of solutions and the asymptotic decay
estimates, as one can see from the long list of references at the end of this paper. The continuum mechanics approach we
choose allows for a correct transposition of all these results into a physically different phenomenon like scintillation is.

Therefore, by using the results obtained into Chen and Jungel,15 we expand the results of Daví12 to show the existence of
weak-strong renormalized solutions: we further show also (whenever it is possible) existence and asymptotic decay results
for the phenomenological models widely used in the literature, which can be obtained from our model by introducing
suitable approximations as we did into Daví.9

We remark that scintillation is strongly affected by temperature, and the crystal is linearly elastic deformable bodies,
but here we limit our analysis to the isothermal case (the temperature being at most a parameter in the constitutive
quantities) and to rigid crystals as in Daví.9 The effects of temperature are dealt with into Daví8,10 whereas an insight
into the deformable case is provided in a previous study.11 A complete treatment of these electromagnetical, thermal and
mechanical interactions will be provided in a forthcoming book.16

The paper is organized as follows: in Section 2, we give an overview of the model proposed into previous works,8–11

which leads to a RDD system: then we study the properties of the stationary solutions, which are important when we deal
with the solution asymptotic properties.

In Section 3, we extend, with the help of Chen and Jungel,15 results presented in Daví12 and we give results on existence
of weak-strong renormalized solutions and on asymptotic decay, this last result being a direct estimate of the decay time.
This result allows, for the first time, to estimate the decay time in terms of the parameters describing the physical properties
of a given scintillating crystal and which appears explicitly in the equations we obtained.

Finally in Section 4, first of all, we put the coupled RDD and Poisson equations in an adimensional form by introducing
characteristic length and time related to the scale of scintillation, as we did into Daví.9 The resulting boundary value
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problem depends on a set of three adimensional parameter related to diffusion, drift, and recombination, respectively.
Then by choosing a suitable measure of smallness, we obtain, to within higher order terms in such a measure, different
approximated models which represents different physically meaningful regimes for scintillators. In such a way we not
only recover the most used phenomenological model in use, namely, the Kinetic and Diffusive ones, but also show under
which hypotheses scintillation could be described either by a reaction-diffusion or a diffusion-drift equation. Also for
these approximated boundary value problems, we give a survey of the existence and asymptotic decay results, either by
taking them straight from the available literature or by adapting them to the specific context of scintillation as described
by our model.

2 THE CONTINUUM MODEL FOR ISOTHERMAL AND RIGID
SCINTILLATORS: THE BOUNDARY VALUE PROBLEM

2.1 A reaction-diffusion-drift equation for scintillators
The charge carriers with density N, generated at the point x∗ and time t∗ and whose dimension is (length)−3, represent a
population of carriers which can differ by their sign (e.g., negative electrons, positive holes, neutral excitons, and so on)
and by their recombination mechanism. Accordingly, we may differentiate these carriers by introducing an ordered array
n, the charge carrier densities vector:

n ≡ (n1 ,n2 , … nk) , N =
k∑
𝑗=1

n𝑗 ; (1)

clearly, the greater is k, the finer will be our description of the phenomena: the simplest non-trivial choice is k = 2 as
in Li et al,17 where n1 represents the electrons population (which is equal to the holes population) and n2 represents the
population of excitons, which are bounded electron-hole pairs evolving together. In the various phenomenological models
for scintillation thus far proposed, we may have m = 3 as in Williams et al18 and Moses et al.,19 m = 7 as in Gridin et al20

whereas in Vasil'ev,21 we have m≥11. The charge carrier densities are related to N by

n𝑗 = 𝛼𝑗N , 𝛼𝑗 ≥ 0 , 𝑗 = 1 , 2 , … , k ,
k∑
𝑗=1
𝛼𝑗 = 1 ; (2)

the set {𝛼1 , 𝛼2 , … , 𝛼k} depends on the specific scintillator, on the initial energy E and on the initial data (cf. the discussion
in Bizzarri et al.22).

We identify the charge carriers densities at (x∗ , t∗) with fields defined on the whole Ω× [0 , 𝜏) and whose regularity will
shall made precise when needed:

Ω × [0 , 𝜏) ∋ (x , t) → n𝑗(x , t) ≥ 0 , 𝑗 = 1 , 2 , … k ; (3)

without loss of generality we may assume that the mesoscopic volume Ω is a ball of a still unprescribed radius R, centered
at x∗.

We assume accordingly the k-dimensional field, the excitation carrier densities vector

Ω × [0 , 𝜏) ∋ (x , t) → n(x , t) ∈  ,  = R
k
+ ∪ {0} , (4)

as the main state variable in our description of scintillation. In view of (1), since nj≥0, 𝑗 = 1 , 2 , … , k, we can view the
extension of N to a field on Ω as the L1(Ω) norm of n:

||n||L1(Ω) = ∫
Ω

k∑
𝑗=1

|n𝑗| = ∫
Ω

N . (5)

Let e be the elementary charge, then the excitation carrier vector induces a free charge density within the scintillation
volume Ω

𝜌𝑓 = ez · n , in Ω , (6)
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with z = (z1 , z2 , … zk), z𝑗 ∈ Z, 𝑗 = 1 , 2 , … k the charge vector. By the Maxwell-Lorentz equations in absence of magnetic
fields,23 these free charges induce a local electric potential (x , t) →𝜑(x , t) which, for a given time t∈ [0 , 𝜏), is the solution
of the Poisson equation of electrostatic with associated Neumann boundary conditions:

− 𝜖Δ𝜑 = 𝜒|Ωez · n , in R
3 × [0 , 𝜏) ,

[[∇𝜑]] · m = 0 , on 𝜕Ω × [0 , 𝜏) ,
(7)

where 𝜖 is the permittivity of the crystal (which at this stage we assume isotropic or at most cubic)†
and m is the outward unit normal to 𝜕Ω and

𝜒|Ω =
⎧⎪⎨⎪⎩

1 , in Ω ,

0 , in (R3∕Ω) .
(9)

We notice that in (7), we do not take into account either bound charges or external charges since we are mainly interested
into X- or 𝛾-rays which have zero charge, whereas for𝛼- and 𝛽-rays, which have, respectively, positive and negative charges,
an external charge contribution q∗ should be added to (7).

We further remark that an implicit way to select the radius of Ω is indeed that at its boundary, the Neumann condition
holds, that is, there is no electric field outflow trough 𝜕Ω.

The boundary value problem (7) admits an unique (up to a constant) weak solution𝜑∈H1(Ω) provided the total charge
is conserved:

Q(t) = e∫
Ω

z · n = 0 , ∀t ∈ [0 , 𝜏) , (10)

and the constant can be conveniently determined if we set 𝜑̄ = 0,‡ thus making the solution unique.
Following Albinus et al,24 we assume that the electrostatic free-energy associated to the electric potential has, besides

the classical conservative term which depends on n by the means of (7), a dissipative term F(n) of entropic nature which
also depends on the excitation carrier vector:

U(n) = 1
2 ∫

R3

𝜖||∇𝜑(n)||2 − 𝜃 ∫
Ω

F(n) , (11)

where 𝜃 > 0 is the (fixed) absolute temperature; in Daví,10 we showed how to such an energy it can be associated an
electrostatic self-power:

.
U = ∫

Ω

s · .n , (12)

where the elements of the array s≡ (s1 , s2 , … sk) represent the scintillation potentials associated to the various charge
carriers:

s𝑗(n) = ez𝑗𝜑(n) − 𝜃
𝜕F
𝜕n𝑗

(n) , 𝑗 = 1 , 2 , … , k . (13)

We shall call s, with an abuse of terminology, the scintillation potentials vector:

s(n) = ez𝜑(n) − 𝜃 𝜕F
𝜕n

(n) , (14)

†For anisotropic crystals equations (7) become:
− 𝜖odivK[∇𝜑] = 𝜌∗ , in R

3 × [0 , 𝜏) ,
[[K∇𝜑]] · m = 0 , on 𝜕Ω × [0 , 𝜏) ,

(8)

where 𝜖o is the vacuum permittivity and K is the symmetric and positive definite permittivity tensor; relations (11) changes accordingly with
𝜖oK[∇𝜑] · ∇𝜑 in place of 𝜖||∇𝜑||2
‡For any given integrable function f, we shall denote with 𝑓 its mean value:

𝑓 = 1
meas(Ω)∫Ω

𝑓 .
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and it is easy to show that
s = U , (15)

where  denotes the Frechet derivative.
In Daví8 and the related papers,9,10 we showed how, by using a continuum with microstructure approach and the

classical dissipation inequality, the evolution equation for the charge carriers in scintillators can be represented as

divS(n)[∇s] − H(n)s = .n , in Ω × [0 , 𝜏) ,
S(n)[∇s] · m = 0 , on 𝜕Ω × [0 , 𝜏) ,

(16)

where S(n) and H(n) are two definite-positive k× k matrices and

∇s = ez ⊗ ∇𝜑 − 𝜃 𝜕
2F
𝜕n2 ∇n . (17)

The boundary value problem (16) has an equivalent variational formulation which leads to a gradient-flow type problem
(vid., e.g., previous studies25,26 and for more recent results27):

.n = −Ψ∗(n , s) , Ψ∗(n , s) = 1
2 ∫

Ω

S(n)[∇s] · ∇s + H(n)s · s , (18)

where the conjugate dissipation functional Ψ∗(n , s) is related to the thermodynamical dissipation 𝔇 by

𝔇 = 2Ψ∗ . (19)

The gradient-flow classical structure for a driving functional U is

G(n) .n = −U ; (20)

starting with Mielke,28 provided there exists K(n) = G−1(n), the following formulation was proposed and successfully
used into, e.g.,29–36

.n = −K(n)[U] , (21)

where the Onsager structure K can be splitted additively into different contributions. For instance, in our case, we may
set:

K = KD +KR , KD[ · ] = −divS(n)∇[·] , KR[ · ] = H[ · ] . (22)

Furthermore, in Daví,8 it is shown that, provided we identify the entropic term with the Gibbs entropy,

F(n) = −kB

k∑
𝑗=1

n𝑗
(

log
(n𝑗

c𝑗

)
− 1

)
, (23)

with cj, 𝑗 = 1 , 2 , … , k, normalizing constants and kB the Boltzmann constant then, by using (23) into (14) and (17), we
arrive at a reaction-diffusion-drift equation for the evolution of charge carriers in scintillators with Neumann boundary
conditions and initial data:

div(D[∇n] + M[N(n)z ⊗ ∇𝜑]) − r(n) = .n , in Ω × [0 , 𝜏) ,
D[∇n]m = 0 , on 𝜕Ω × [0 , 𝜏) ;
− 𝜖Δ𝜑 = 𝜒|Ωez · n , in R

3 × [0 , 𝜏) ,
[[∇𝜑]] · m = 0 , on 𝜕Ω × [0 , 𝜏) ,
no(x) = n(x , 0) , 𝜑o(x) = 𝜑(x , 0) , in Ω .

(24)
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In (24), the k× k matrix N(n) is defined as N(n) = diag{n1 ,n2 , … nk}, the k× k symmetric and semi-definite positive
Diffusion and Mobility matrices D and M are correlated by the Einstein–Smoluchowsky relation:

D = 𝜃kB

e
M , (25)

and r(n) is the k-dimensional recombination array.
The relation between the matrix S in (16) and the matrix M in (24) is§

M = eS(n)N−1(n) , (26)

where N−1(n) denotes the diagonal k× k matrix whose entries are n−1
𝑗

when nj ≠ 0 and 0 when n𝑗 = 0. The semi-definite
positiveness of M accounts for excitation carriers whose mobilities (and hence by (25) the associated diffusivities) are
either zero or negligible with respect to those of other charge carriers. However, in Section 3, we shall see that in order to
get decay time estimates, we shall require the stronger requirement of positive-definiteness for M.

Finally, the k× k matrix H(n) and the k-dimensional array r(n) are related by

H(n)s = r(n) , (27)

where, by following Mielke,28 we assume that

H(n) =
s∑

h=1
kh𝓁

(
nah

cah
,

nbh

cbh

)(
ah − bh)⊗ (

ah − bh) , va =
k∏
𝑗=1

va𝑗
𝑗
. (28)

In (28) h = 1 , 2 , … s denote the number of recombination processes with rates kh with the two k-dimensional arrays
ah = (ah

1 , a
h
2 , … ah

k) and bh = (bh
1 , b

h
2 , … bh

k) describing the hth recombination mechanism with rate kh:

ah
kh−−−−⇀↽−−−− bh , h = 1 , 2 , … s , (29)

and the function 𝓁(x , y) is the logarithmic mean:

𝓁(x , 𝑦) =

{ x−𝑦
log x−log 𝑦

, x ≠ 𝑦,

x , x = 𝑦.
(30)

Whenever we assume for F(n) the Gibbs entropy (23), then from (27) and (28), we arrive at a polynomial expression for
the recombination term r(n) (vid., e.g., Glitzky and Mielke29 for the details):

r(n) =
s∑

h=1
kh

(
nah

cah
− nbh

cbh

)
(ah − bh) , (31)

where we used the identity log va = a · log v. In order to arrive to (31), we implicitly assumed that all the recombination
mechanisms are detailed balanced28; that is, there exists a steady recombination state which in our case coincides with c;
further, let

 ≡ span{ai − bi|i = 1, 2, … s} ⊂ R
k , (32)

and
⟂ ≡ {v ∈ R

k|v · u , ∀u ∈ } , (33)

§We assume that the mobility is independent on n, as pointed out into Khodyuk and Dorenbos37: in such a case, S(n) must be restricted to the form

S(n) = SoN(n) ,

where So is a k× k matrix with constant components.
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then from (31), we have
r(n) ∈  . (34)

If we consider now the differential form of the charge conservation (10), namely,

d
dt

Q(t) = e∫
Ω

z · .n = 0 , ∀t ∈ [0 , 𝜏) , (35)

then from (24), we obtain

0 = ∫
Ω

r(n) · z = r(n) · z , (36)

which in turn, by (31), implies the electrical neutrality of each recombination mechanism:

z · (ah − bh) = 0 , h = 1 , 2 , … s , (37)

and hence z ∈ ⟂ in such a way that the local orthogonality condition holds:

r(n) · z = 0 . (38)

In Mielke,28 it is remarked that the term r(n) can be represented as a polynomial relation in n only if we identify F(n)
with the Gibbs entropy (23), whereas for a different entropic term like, e.g., the Fermi–Dirac potentials, this is not possible.

Equation (24)1, which represents the conservation of electric current normalized with respect to e, was first proposed
for scintillators in Vasil'ev21 by following Fok38 and Antonov-Romanovskiy39 and with r(n) a polynomial, at most cubic,
function of n; it was used for scintillators in previous works.17,18,37,40–42 Moreover, special cases of this equations were
widely used to model scintillation at a phenomenological level in many theoretical and experimental paper, as we shall
describe in details in Section 4. We also remark that the boundary value problem (24) is the same obtained, by starting
from a different approach and with a different reaction term r(n), in Albinus et al,24 for semiconductors (vid. also previous
works28,30).

In the available phenomenological models for scintillation, the recombination term r(n) is generally assumed as a cubic
expression in n:

ri(n) = r0
i +

k∑
𝑗=1

Ai𝑗n𝑗 +
k∑

h,𝑗=1
Bi𝑗hnhn𝑗 +

k∑
h,m,𝑗=1

Ci𝑗hmnhnmn𝑗 , i = 1 , 2 , … , k . (39)

The terms ro
i describes the excitation carriers creation rate in the crystal under irradiation; the other terms in (39)

are further splitted in order to represent different recombination mechanism. The terms Aij, which accounts for linear
recombination, can be further decomposed into three terms:

Ai𝑗 = Ar
i𝑗 + Anr

i𝑗 + Ae
i𝑗 , (40)

which represent, respectively, radiative recombination with photon emission, non-radiative recombination without pho-
ton emission and exchange between excitation carriers. The quadratic recombination is represented by the terms Bijh
which can also be splitted into Bi𝑗h = Br

i𝑗h + Bnr
i𝑗h with the same meaning of superscript as in (40), whereas the third-order

or Auger totally non-radiative recombination is described by the terms Ci𝑗hm = Cnr
i𝑗hm.

In order to reconcile (39) with (31) we consider here the following example for k = 3 where n1 =ne and n2 =nh represent
respectively the electrons and holes densities and n3 =nex represents the excitons density. By following, for instance, the
description provided in section 3.3 of Korzhik et al,43 then we may have these recombination mechanisms:

1. n1 + n2 = 0 , a1 = (1 , 1 , 0) , b1 = (0 , 0 , 0) ,
2. n1 + n2 = n3 , a2 = (1 , 1 , 0) , b2 = (0 , 0 , 1) ,
3. n1 + n2 = n1 + n2 + n3 , a3 = (1 , 1 , 0) , b3 = (1 , 1 , 1) ,
4. n1 = 2n1 + n2 , a4 = (1 , 0 , 0) , b4 = (2 , 1 , 0) ,
5. n1 = n1 + n3 , a5 = (1 , 0 , 0) , b5 = (1 , 0 , 1) ,
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6. n2 = n1 + 2n2 , a6 = (0 , 1 , 0) , b6 = (1 , 2 , 0) ,
7. n2 = n2 + n3 , a7 = (0 , 1 , 0) , b7 = (0 , 1 , 1) ,

and then from (31), we get

r1(n) = r2(n) = − k1 −
k4

c1
n1 −

k6

c2
n2 −

k2

c3
n3

+ k1 + k2

c1c2
n1n2 +

k4

c2
1c2

n2
1n2 +

k6

c1c2
2

n1n2
2 ,

r3(n) = − k3

c1
n1 −

k7

c2
n2 +

k2

c3
n3

+ k2 − k3

c1c2
n1n2 +

k5

c1c3
n1n3 +

k7

c2c3
n2n3 ,

(41)

which can be trivially put into the form (39), with the appropriate identification of radiative, non-radiative or exchange
terms: we notice that the mechanisms 3, 4 and 6 are Auger recombination, whereas 2, 5 and 7 represents scattering and
the mechanism 1 is the simple electron-hole recombination (cf., e.g., the models proposed either into Bizzarri et al22 or
Bizarri et al44 where ne =nh =neh).

As we already remarked more complex expressions for (39) can be proposed: for instance, in Gridin et al,20 for k = 7,
we had

r1(n) = r0
1 + A14n4 + B113n1n3 + B115n1n5 + B117n1n7 ,

r2(n) = r0
2 + A23n3 + A25n5 + B223n2n3 + B224n2n4 + B227n2n7 ,

r3(n) = A33n3 + B323n2n3 + B336n3n6 ,

r4(n) = A44n4 + B417n1n7 + B424n2n4 ,

r5(n) = A55n5 + B515n1n5 + B527n2n7 ,

r6(n) = r0
6 + A66n6 + B613n1n3 ,

r7(n) = A77n7 + B715n1n5 + B724n2n4 ,

(42)

with n1 and n2 the electron and holes densities, n3 and n6 the self-trapped electrons and excitons, respectively, n4 and n5
the electron and holes captured by the activation centers and finally n7 denotes the excited activator centers: in Gridin
et al,20 a detailed description of the physical motivation of these relations is provided. We notice that in this model the
Auger mechanism is missing, and the recombination terms are at most quadratic.

2.2 Stationary solutions
It is trivial to show that the stationary solutions, that is equilibrium solutions n∞ for the boundary value problem (24)
with .n = 0, can be obtained by setting s = 0, which by (27) leads to the equilibrium condition:

r(n∞) = 0 . (43)

When F(n) is identified with the Gibbs entropy (23), then from s = 0, we have

s𝑗 = ez𝑗𝜑∞ + 𝜃kB log
n∞
𝑗

c𝑗
= 0 , 𝑗 = 1 , 2 , … , k , (44)

where the stationary electric field 𝜑∞ is the solution of

−𝜖Δ𝜑∞ = e
k∑
𝑗=1

z𝑗n∞
𝑗 , in Ω , (45)
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with Neumann boundary conditions on 𝜕Ω. From (44), then we have

n∞
𝑗 (x) = c𝑗 exp

(
−

ez𝑗𝜑∞(x)
𝜃kB

)
, 𝑗 = 1 , 2 , … , k , (46)

and (45), (46) together leads to the semilinear Poisson-Boltzmann equation for the stationary electric field:

−𝜖Δ𝜑∞ = e
k∑
𝑗=1

z𝑗c𝑗 exp
(
−

ez𝑗𝜑∞

𝜃kB

)
, in Ω; (47)

in Li,45 a uniqueness result in H1(Ω) for (47) with Dirichlet boundary conditions was obtained.
It is trivial to show that the equilibrium solution n∞ is also a steady state c for the detailed balance condition, and

indeed, in (27), we have

(n∞)ah

cah
− (n∞)bh

cbh
= exp

(
− e𝜑

kB𝜃
(z · ah − z · bh)

)
= 0 , (48)

by (46) and (37), and hence, the equilibrium condition (43) is satisfied.
We finally deal with the problem of the determination of c = (c1 , c2 , … , ck) in (46): if we define the k× k diagonal

matrix L(x)

L(x) = diag
{

exp
(
−ez1𝜑

∞(x)
𝜃kB

)
, exp

(
−ez2𝜑

∞(x)
𝜃kB

)
, … , exp

(
−ezk𝜑

∞(x)
𝜃kB

)}
, (49)

then (46) can be written as

n∞(x) = L(x)c . (50)

and then, by (10) L(x)c ∈  .
To obtain the explicit value of c, we may use (43), whereas the uniqueness of c follows instead, as pointed out in Fellner

and Kniely,14 by monotonicity, (10) and the uniqueness of 𝜑∞ ∈H1(Ω) with 𝜑̄∞ = 0.

3 EXISTENCE AND ASYMPTOTIC DECAY

In this section, we shall give an account of the existing results concerning the existence of solutions and the asymptotic
estimates for the boundary value problem (24): we remark that the latter results are important in order to get a scintillation
decay time estimate. We shall not enter into the mathematical details which can be found in the references we quote,
rather we shall adapt if necessary these results to the specific cases of our boundary value problems.

The problem of finding existence, asymptotic estimates and qualitative bounds for the solutions for the coupled bound-
ary value problem (24) has received a strong attention in the recent years, vid., e.g., 13–15,46–55 and the many references
quoted therein: to this regard, it is important to remark that most of these results deal with semiconductors or chemical
reactions which differ from scintillators by the structure of the reaction term r(n). Most of these results are based on the
so-called Entropy method, whose importance is explained in full in these words taken from Di Francesco et al.56 (vid. also
the discussion in Hopf57):

The entropy method refers to the general idea of a functional inequality relationship between an entropy
functional of a system and its monotone change in time, usually called the entropy dissipation. Such an
entropy-entropy dissipation inequality entails convergence to an entropy minimizing equilibrium state, at first
in entropy and further in L1 using Cziszár-Kullback-Pinsker-type inequalities. The entropy approach is per se
a nonlinear method avoiding any kind of linearization and capable of providing explicitly computable conver-
gence rates. Moreover, being based on functional inequalities rather than particular differential equations, it has
the advantage of being quite robust with respect to model variations.

In the next subsection, we shall show how some of these results can be extended to the RDD equations for scintillators.
As far as the decay time is concerned, the available experimental data (vid., e.g., the recent analysis in Swiderski
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et al.58) and the numerical solution of phenomenological models as in Lu et al,59 show that the excitation carriers decay
exponentially in time to an asymptotic value n∞, namely:

||n(· , t) − n∞(·)|| = A𝑓 exp(−t∕𝜏𝑓 ) + As exp(−t∕𝜏s) , (51)

where the indices f and s denotes the so-called fast and slow components of the excitation, respectively. Accordingly, since
by definition the Decay time is the time required for scintillation emission to decrease to e−1 of its maximum, then we get
a Fast Decay Time 𝜏 f and a Slow Decay Time 𝜏s. In many cases, one of the components is negligible, and the decay obeys
a simple exponential law, which can be also used to describe an average decay time.

3.1 Global existence
The first results concerning existence theory for the boundary value problems like (24) was obtained in previous stud-
ies52,53: such a result, which relies on the notion of global renormalized solutions leaves still open, as pointed out in
Fischer,53 the problem the existence of weak or even smooth global solutions in time: the reason, as pointed out in detail
into Fischer53 is the growth condition on the reaction/recombination terms.

These results were extended into Chen and Jüngel,13,15 and here, we shall follow the latter. The main strongpoint of
these results is that no growth condition is imposed on the reaction/recombination term. In our case, the diffusion is
linear: unfortunately, we cannot extend their results to the nonlinear case they study, because for (25), this would imply
also a nonlinear mobility, whereas in all these paper, the mobility is implicitly assumed M = I with I the k× k identity.

First of all, we recall the notion of renormalized solution, first introduced into literature60–62 for the Boltzmann and
transport equations, as it was given into Fischer.52

An excitation density vector n is a renormalized solutions for (24) if for all functions 𝜉 ∶  → R with compactly sup-
ported derivative ∇n𝜉, the function 𝜉(n) must satisfy the equation derived from (24) by a formal application of the chain
rule in a weak sense. As it is pointed out in Villani,63 the function 𝜉 must belongs to a well-chosen class of admissible solu-
tions. The physical interpretation of these renormalized solution is that they gives a distributional sense to the boundary
value problem (71).

More precisely we say that:

• n = (n1 ,n2 , … ,nk) is a renormalized solutions for (24) if ∀𝜏 > 0, ni ∈L2(H1(Ω); [0 , 𝜏)) and for any 𝜉 ∈ C∞(), such
that ∇n𝜉 ∈ C∞

0 (;Rk) and 𝜓 ∈ C∞
0 (Ω̄ × [0 , 𝜏)), it holds:

𝜏

∫
0
∫
Ω

𝜉(n) .
𝜓 =

𝜏

∫
0
∫Ω

([D∇n + MN(n)z ⊗ ∇𝜑] · ∇n∇n𝜉[∇n] + r(n) · ∇n𝜉)𝜓

+

𝜏

∫
0
∫
Ω

(D∇n + MN(n)z ⊗ ∇𝜑) · ∇n𝜉 ⊗ ∇𝜓 .

(52)

We leave out all the details and recall only the main hypotheses and results given in Chen and Jungel,15 and first of
all, we assume that there exist numbers 𝜋i > 0 and 𝜆i ∈ R, i = 1, 2, … , k such that ∀n≡ (n1 , n2 , … , nk)∈ (0 ,∞)k, the
following inequality holds:¶

k∑
i=1
𝜋iri(n)

(
log ni

ci
+ 𝜆i

)
≥ 0 , (53)

a condition which implies the quasi-negativity of r(n), that is (cf. the models in Gridin et al20 and Bizzarri et al.22):

ri(n1 , … ,ni−1 , 0 ,ni+1 , … ,nk) ≤ 0 , ∀n ∈  ,∀i = 1 , 2 , … , k , (54)

which grants the non-negativity of solutions.

¶A certain care is requested when we look at (53) and (54), since the reaction term f(u) in Chen and Jungel15 is the opposite of our recombination term
r(n), say 𝑓 (u) = −r(n). Hence, the reversed inequalities and different definition than those given into Chen and Jungel.15

13842



DAVÍ

Condition (53) further ensure the existence of a so-called total entropy:

(n) = ∫
Ω

k∑
i=1
𝜋ini

(
log ni

ci
− 1 + 𝜆i

)
+ exp(−𝜆i) , (55)

which is a Lyapunov functional for the reaction system (92) if 𝜋i = 1 ,∀i.
Provided these preliminary conditions are satisfied, then the main hypotheses from Chen and Jungel15 can be rephrased,

within the context of our treatment, as

(H1) Drift term: ∇𝜑 ∈ L∞([0 , 𝜏) ;L∞(Ω ,Rk+3));
(H2) i) Recombination term: r(n) ∶  → Rk is locally Lipschitz continuous, that is there exists a function

K(·) : [0 ,+∞)→ [0 ,+∞) non-decreasing and such that a.e. (x , t)∈Ω× [0 , 𝜏) and ∀n , n̂ ∈ :

||r(n) − r(n̂)|| ≤ K(max{||n|| , ||n̂||})||n − n̂|| , (56)

and ∀𝜏 > 0, then r(0) ∈ L2(Ω × [0 , 𝜏)).
ii) the inequality (53) holds ,

iii) there exist m ∈ N such that ∀n ∈  with
∑k
𝑗=1 n𝑗 ≥ m, then

∑k
𝑗=1 r𝑗(n) ≥ 0 ;

(H3) Initial data: no = (n0
1 ,n

0
2 , … ,n0

k) ∈ L∞(Ω ,Rk), such that inf no
𝑗
> 0 , 𝑗 = 1 , 2 , … , k;

(H4) The mobility matrix M (and hence for (25) the diffusion matrix D) is diagonal and positive-definite.

From a physical point of view, the first three hypotheses requires simply a certain degree of regularity on the initial data,
the electric field and the recombination term: as far as the last hypothesis is concerned, from a physical point of view the
mobility matrix should be semi-definite positive to allow for charge carriers with no mobility. Hypothesis (H4), which
is a truly mathematical one, rules out such possibility and also does not allow for both cross-mobility (and diffusion). It
would be an useful generalization to recover the results of Chen and Jungel15 when it is relaxed into the more physically
interesting:

(H4)′ The mobility matrix M (and hence for (25) the diffusion matrix D) is semi-definite positive.

A first consequence of the hypotheses (H1)–(H4) is that there exists

• a global renormalized solution n = (n1 ,n2 , … ,nk) satisfying ni ≥ 0 in Ω, i = 1, 2, … k , ∀t ,
• (n) =< +∞ , ∀t ;

moreover they imply the main result of Chen and Jungel15 (Weak-strong uniqueness of the solutions) which states that the
boundary value problem (24):

• admits a weak-strong renormalized solution n = (n1 ,n2 , … ,nk) satisfying ni ≥ 0 in Ω× [0 , 𝜏), i = 1, 2, … k , ∀t ,
• (n) =< +∞ , in Ω× [0 , 𝜏) ,
• n∈ (0 , 𝜏 ; L1(Ω)), cf. (5) .

Finally, for n a renormalized solution to (71), v = (v1 , … vk) is a strong solution to (71) on some time interval [0 , 𝜏⋆)
with 𝜏⋆≤𝜏 in the following sense: there exist C> c> 0 such that

• c ≤ vi(x , t) ≤ C , (x , t) ∈ Ω × [0 , 𝜏⋆) , i = 1 , 2 , … , k;
• || .v||L∞(Ω×[0 ,𝜏⋆)) + ||∇v||L∞(Ω×[0 ,𝜏⋆)) ≤ C ,

then if, for any s∈ (0 , 𝜏⋆), 𝜙 ∈ C∞(Ω̄ × [0 , 𝜏⋆)):

s

∫
0
∫
Ω

𝜙
.v = −

s

∫
0
∫
Ω

(D[∇v] + MN(v)z ⊗ ∇𝜑) · ∇𝜙 −

s

∫
0
∫
Ω

𝜙r(v) ; (57)

then n(s , t)= v(s , t), for x∈Ω, s∈ (0 , 𝜏⋆).
We remember that, as pointed out into Fischer,53 we can say nothing about the global existence in time of smooth

solutions: however this result is important in order to get a general framework for numerical solutions of (71).
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3.2 Asymptotic estimate for the decay time
In Fellner and Kniely,14 an explicit estimate of the asymptotic convergence was obtained for the Rosbroeck model for
semiconductors with Shockley–Read–Hall potential and k = 2: here, we shall show how the results obtained there can
be adapted to the case of scintillators in order to obtain an explicit estimate for the decay time. Once again we shall leave
out the technicalities and details and we shall give only the main results using our language and notations.

We have already seen that we can safely assume uniqueness for c: given this in Fellner and Kniely14 some preliminary
bounds are necessary, namely, the following for c = (c1 , c2) and n∞ = (n∞

1 ,n
∞
2 ):

c𝑗 ≤ eΦ∞
, n∞

𝑗 ≤ e2Φ∞
, (n∞

𝑗 )
−1 ≤ e2Φ∞

, 𝑗 = 1 , 2 , (58)

with

Φ∞ =
‖‖‖‖ez𝜑∞

𝜃kB

‖‖‖‖L∞(Ω)
. (59)

Moreover, for the recombination r(n) given by (39), there exists a constant ko such that

0 < ko ≤ ||r(n)||L∞(Ω) . (60)

If we consider the free-energy U(n) defined by (11) with the choice of the Gibbs entropy (23) for the term F(n), then
the main results of Fellner and Kniely14 are based on the derived notion of Relative Gibbs free-energy (or relative entropy
according to Fellner and Kniely14):

(u|v) = U(u) − U(v) −U(v)(u − v) ; (61)

by an explicit calculation it can be show that

(n|n∞) = ∫
Ω

k∑
i=1

ni log
(

ni

n∞
i

)
− (ni − n∞

i ) + 1
2
𝜖||∇𝜑 − ∇𝜑∞||2 , (62)

and then, by an easy calculation, it can be shown that the Dissipation  defined by (19) is given by

𝔇(n , 𝜑) = − d
dt
(n|n∞) . (63)

In Fellner and Kniely,14 by starting from (63) and by the means of a repeated use of Csiszár–Kullback–Pinsker type
inequalities, provided (58) holds, the two following estimates were obtained:

𝔇(n , 𝜑) ≥ C1(n , 𝜑) ,||n − n∞||2L1(Ω) + ||𝜑 − 𝜑∞||2H1(Ω) ≤ C2(no , 𝜑o) exp(−C1t) ,
(64)

where 𝜑o is the unique solution of (7) for the initial data no.
The most remarkable feature of this result is that both C1 and C2 have an explicit dependence on the parameters of (71):

C−1
1 =1

2
exp(2Φ∞)max

{
T
m

exp(2Φ∞) , 1
ko

}
· (1 + (Ω) exp(2Φ∞)) ,

C2 =3 exp(2Φ∞) + 1
2
(no , 𝜑o) + 2(1 + (Ω)) ;

(65)

in (65) (Ω) > 0 is the constant in the Poincaré inequality:

||Ψ||2Lp(Ω) ≤ (Ω)||∇Ψ||2Lp(Ω) , ∀Ψ ∈ H1(Ω) , Ψ̄ = 0 , (66)
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which in L2(Ω) reduces to (Ω) = 𝜆−1
1 with 𝜆1 the first eigenvalue of:

ΔΨ = 𝜆Ψ , in Ω ,
Ψ = 0 , on 𝜕Ω .

(67)

We notice that, for Ω a sphere of radius R it is (Ω) ≤ (2R∕𝜋)264: for L = 2R then we have (Ω) ≤ 0.1. Such a value is
consistent with the value (Ω) ≈ 0.07 which was obtained into Daví9 where the 𝜆1 was calculated as the square root of
the reciprocal of the first zero of the Bessel function Jo′.

The expression for the decay time 𝜏 = C−1
1 depends, by (65)1, in an explicit manner on the mobility parameter m,

the reaction term r(0), the initial data no, and the scintillation volume Ω: as far as we know it is the first explicit esti-
mate of scintillator decay time which depends on the (measurable) constitutive parameters of the model, albeit limited
to the case k = 2. In Daví,9 we showed how for four different scintillators these results gave a very good estimate for the
experimentally measured fast decay time.

4 THE APPROXIMATED MODELS

4.1 The adimensionalized boundary value problem
In order to put the boundary value problem (24) in an adimensionalized form, we begin with the choice of character-
istic length and time pair (L , T) related to the space and time scintillation scales, in order to define the dimensionless
coordinates (𝜁 , 𝜏):

𝜁 = x
L
, 𝜏 = t

T
, (68)

and the dimensionless excitation carriers density u=u(𝜁 , 𝜏) and electric potential 𝜓 = 𝜓(𝜁 , 𝜏):

u = nL3 , 𝜓 = 𝜑
𝜖

eL
. (69)

If we further set:
M∗ = 𝜇−1M , r∗ = 𝜅−1r , (70)

where 𝜇 is the greatest eigenvalues of M and and 𝜅 the greater component of r or, as in Daví,9 the value of their norm,
then equations (24)1, 3 can be rendered dimensionless

div𝜁 (dD∗[∇𝜁u] + mM∗[ez ⊗ ∇𝜁𝜓]) − kr∗(u) = u𝜏 ,
− Δ𝜁𝜓 = z · u ,

(71)

and dependent on the three adimensional parameters:

d = TkB𝜃

eL2 𝜇 , m = eT
𝜖L3𝜇 , k = 𝜅T . (72)

We remark that the parameter k depends on the incoming energy by the means of r(n), whereas m depends only on con-
stituive or scaling parameters: accordingly, depending on the energy of ionizing radiation we may have different physically
meaningful regimes which are described in the following subsections. Further, for

𝛿 = kB𝜃

e
𝜇 , (73)

the greatest eigenvalue of D and provided we define the diffusion length LD =
√
𝛿T, then we have

d =
(LD

L

)2
; (74)

we notice that an experimental estimate of LD is given e.g. into.22
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The set of dimensionless parameters {d , m , k} which appears into (71)1 describes three main regimes for the boundary
value problem, depending on the crystal constitutive properties and on the initial ionizing energy. In the next subsections
we shall show how many of the most used phenomenological models for scintillators, can be encompassed within (71)1 by
an appropriate choice of these parameters. For these models, which we define approximated because some terms of (71)1
can be neglected, we shall also briefly describe the results concerning existence and decay time which are available in the
literature.

4.2 The reaction-diffusion approximation
Let d ≈ k = O(1), that is,

𝜅 ≈ 𝜃kB

eL2 𝜇 = O(1) , (75)

and let
m
k

= e
𝜖L3

𝜇

𝜅
= o(𝜀) , m

d
= e2

𝜖L𝜃kB
= o(𝜀) , (76)

then from (71)1 we recover, to within higher order terms, the reaction-diffusion equation

divD[∇n] − r(n) = .n , (77)

and (71)2 is uncoupled, the excitation density vector being a data; this phenomenological model, which traces back its
ancestry to the analogous models for chemical reactions,65,66 is used in many papers dealing with experimental identifi-
cation of scintillator properties, as in previous works59,67–72 and did not take into account the drift contribution induced
by the electric field 𝜑.

Reaction-diffusion equations were studied with a great interest starting from the kinetics of chemical reactions66 and
there are treatises and textbook devoted to various aspects of them like, for example, in literature73–75 and many others.
However, problems like the existence of solutions and their asymptotic decay have attracted a growing number of stud-
ies in recent years, mainly because the difficulties posed by the lack of control of the recombination terms as pointed
out in details in previous works.51–53 Most of the recent results dealing with asymptotic decay deals indeed with reaction
terms with quadratic growth for chemical reactions, vid. literature,76–80 and also, for a different point of view, see pre-
vious studies.28,46,81–83 A first result concerning the existence of renormalized solutions was presented into Desvillettes
et al,84 whereas the most general result at the present available is Fellner et al,85 where however the nonlinear case of
diffusion in porous media is treated. See also the references into Fischer et al,35 where these results were extended to the
non-isothermal case.

Here we show how these results can be used in the context of our problem, described by the equation (77). There are,
at the best of our knowledge, no results for a general recombination terms: however, if we neglect the cubic Auger effect,
we can use the existence results of Desvillettes et al84 and decay estimates obtained in Fellner and Tang.80

We shall give only a brief survey of both these results and how their hypotheses fit within the physics underlying scin-
tillation: we leave out all the technical details contained in the cited works. We remark that a complete existence and
decay estimate results for the scintillation models has yet to be done and the task, given the nature of the reactive term, is
a far from an easy one. A further result presented in Fellner and Tang80 is concerned with the existence of renormalized
solutions for (77), whose structure is the same as in (52) when we neglect the drift terms.

4.2.1 Existence of global weak solutions
The main result of Desvillettes et al84 concerns the existence of global weak solutions for a reaction/recombination term
which is at most quadratic in n. The relevant hypotheses are that the recombination term is locally Lipschitz contin-
uous and quasi-negative (the hypotheses (H2)-i) and (54) of Section 3: then, provided D = diag{D1 ,D2 , … ,Dk} with
Dj >D0 > 0, 𝑗 = 1 , 2 , … k and provided there exist a function Θ(x , t)∈L2(Ω× [0 , 𝜏)), a scalar 𝜇∈ (0 ,+∞) and a function
K(·) defined as in (56) such that:

• K(|| r ||)≤C(1+ ||r ||) ,
• ∀n∈ (1 ,+∞)k and a.e. (x , t):

−
k∑
𝑗=1

log(n𝑗)r𝑗(n) ≤ Θ + 𝜇
k∑
𝑗=1

n𝑗 , (78)

13846



DAVÍ

then (77) admits a global weak solution for any non-negative initial data such that:

||no|| log(||no||) ∈ L2(Ω) . (79)

4.2.2 Asymptotic decay estimates
The result obtained into Fellner and Tang80 is tailored on chemical reactions, which implies mass conservation and
detailed or complex balance of reactive terms, conditions which have no correspondence in the physics of scintillation.
In this paper, by using arguments and tools which are unsurprisingly related to those used into Fellner and Kniely,14 it is
shown that, for n∞, a detailed balanced equilibrium solution corresponding to r(n∞) = 0, then:

||n − n∞||2L1(Ω) ≤ C1(no|n∞) exp(−C2t) , (80)

where the relative entropy  is defined as (cf. (62)):

(no|n∞) = ∫
Ω

k∑
i=1

noi log
(

noi

n∞
i

)
− (noi − n∞

i ) , (81)

C1 = C−1
CKP is the constant in a Csiszár–Kullback–Pinsker type inequality, whereas the constant C2, whose inverse is the

estimate for the decay time, is given by

C2 = 1
2

min
{
𝜆1 ,

K2H1(t)
K1

}
; (82)

in this relation 𝜆1 = CLSI min{Di}, with D = diag{D1 ,D2 , … Dk} and CLSI is the constant in the logarithmic Sobolev
inequality, whereas the two constants K1, 2 depends explicitly on Ω, D, the set kh , ah , bh, n∞ and on the constant K such
that

(n|n∞) ≤ K , (83)

all the details being given in full in Feller and Kniely.80 Finally, the term H1(t) in (82) is given by

s∑
𝑗=1

[(√
n

n∞

)ah

−
(√

n
n∞

)bh]2

≥ H1(t)
k∑

i=1

(√ ni

n∞
i

− 1
)2

. (84)

4.3 The diffusion-drift approximation
Let d ≈ m = O(1), that is

kB𝜃

e2 ≈ 1
𝜖L
, (85)

and
k
d
= eL2

kB𝜃

𝜅

𝜇
= o(𝜀) , k

m
= 𝜖L3

e
𝜅

𝜇
= o(𝜀) , (86)

then we recover, to within higher order terms, the Poisson-Nernst-Planck system, used to model ion fluxes, cell biology
and other electrically driven evolution phenomena:

div(D[∇n] + MN[ez ⊗ ∇𝜑]) = .n ,
in Ω × [0 , 𝜏) ,

− 𝜖Δ𝜑 = ez · n ,
(87)

with Neumann boundary conditions. This model was used into Li et al17,40 to describe the initial stage of the scintillation,
before the recombination takes place. The system (87) is well-studied, and there are many results, dealing with existence,
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asymptotic decay, equilibrium solutions and even explicit analytical solutions for k = 2 (e.g., among the many86–89 and
for more recent advances90–93).

Equation (87)1 can be put in the equivalent gradient flow formulation (21) with K = KD. Its stationary solutions
(n∞ ,𝜑∞) are characterized by s∞ =const., and therefore, (46) is replaced by

n∞
𝑗 (x) = c𝑗 exp

( s∞ − ez𝑗𝜑∞(x)
𝜃kB

)
, 𝑗 = 1 , 2 , … , k , (88)

and the Poisson-Boltzmann equation (47) changes accordingly.

4.4 The reaction-drift approximation
In this case k ≈ m = O(1), and

d
k
= 𝜃kB

eL2
𝜇

𝜅
= o(𝜀) , d

m
= 𝜖L𝜃kB

e2 = o(𝜀) . (89)

The boundary value problem (71) reduces in this case to

div(M[N(n)z ⊗ ∇𝜑]) − r(n) = .n , in Ω × [0 , 𝜏) , (90)

and (7). At the best of our knowledge this equation was never used for scintillators and indeed it can be found in the
theory of dopant diffusion in semiconductors (vid., e.g., Höfler et al.94): however, we list it together with those used for
scintillators for the sake of completeness. For the boundary value problem (90) and (7) global existence, uniqueness and
asymptotic decay results were obtained into Glitzky and Hünlich95 (vid. also Glitzky and Hünlich96 and Glitzky97).

4.5 The kinetic approximation
Let 𝜀 a small parameter, then for k = O(1) and

d
k
= 𝜃kB

eL2
𝜇

𝜅
= o(𝜀) , m

k
= e
𝜖L3

𝜇

𝜅
= o(𝜀) , (91)

then (71)2 reduces, to within higher order terms in 𝜀, to the rate ODE equation:

−r(n) = .n , in [0 , 𝜏) , (92)

with initial condition n(0)=no; we remark that by (92) and (38), then

Cz = z · n , Cz ∈ R , (93)

is a first integral of (92). Also in this case (71)2 is uncoupled, the solution of (92) becoming a charge density supply.
With such approximation, which describes phenomena mainly driven by recombination, we recover the so-called

Kinetic model, the oldest and most used phenomenological model for scintillators,20,22,98–103 which is borrowed from the
kinetic of chemical reactions; see, e.g., previous works.104,105

In a series of recent papers,32–36 dealing with the gradient structure of (24) it is shown that also (92) admits a gradient
structure with K = KR for detailed balanced recombination mechanisms and hence, the energy dissipation methods can
be used with success to get asymptotic decay estimates.

In detail, into Maas and Mielke,36 the well-posedness of (92) was obtained, in the sense that for all initial data no ∈ 
there exists an unique global solution n ∶ [0 , 𝜏) → . Moreover it was proved that since the recombination term satisfies
the detailed balance conditions for the equilibrium state n∞ = c, then (92) admits the gradient structure:

.n = −HU(n) , (94)

with H given by (28).
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Finally, into Mielke and Mittnenzweig,33 an estimate of the kind of (64) was provided:

∗ ≥ CR(n|n∞) , (95)

where the simplified dissipation ∗, such that  ≥ ko∗ where ko is given by, e.g., (60), is defined as

∗ =
s∑

h=1

kh

ko
𝓁
(

nah

cah
,

nah

cbh

)
. (96)

We can however assume that the boundary value problem (24) in the kinetic approximation admits non-homogeneous
solutions: in such a case (24)1 is replaced by

−r(n(x , t)) = .n(x , t) , in Ω × [0 , 𝜏) , (97)

and it becomes a straightforward exercise to follow, for k = 2, the developments of Fellner and Kniely14 in order to recover
the estimates (64) with

C−1
1 = 1

2ko
exp(2Φ∞) · (1 + (Ω) exp(2Φ∞)) ,

C2 =3 exp(2Φ∞) + 1
2
(no , 𝜑o) + 2(1 + (Ω)) ;

(98)

in place of (65), the former being the decay time estimate.

4.6 The diffusive approximation
For d = O(1) (which, by (74) means that L≈LD), and

m
d

= e2

𝜖L𝜃kB
= o(𝜀) , k

d
= eL2

𝜃kB

𝜅

𝜇
= o(𝜀) , (99)

then from (71)1, we obtain a classical anisotropic parabolic equation:

divD[∇n] = .n . (100)

In this case, which describes the phenomena when the diffusion within the track is the driving mechanism of scintil-
lation, we recover the Diffusive model, which describes the diffusion of excitation carrier within the track, vid. previous
study,19 and is rarely used alone as in, e.g., literature.37 Once again, the equation of electrostatic (71)2 is uncoupled. We
notice that the ratio k/d is known as the Thiele modulus in the kinetics of chemical reactions.

A sharp estimate of the decay time for (100) can be easily found by following56#: first of all, we notice that at the
equilibrium .n = 0 and, by the Neumann boundary conditions, ∇n = 0, hence n∞ = n̄∞ = const and by the charge
conservation (10):

z · n̄(t) = z · n̄o = z · n∞ = 0 . (101)

Further, by multiplying both sides of (100) by n(x , t)−n∞, integrating by parts with the Neumann boundary conditions
and by the Poincaré inequality, then we get

d
dt ∫

Ω

|n(x , t) − n∞|2 = −2∫
Ω

D[∇n] · ∇n ≤ − 2𝛿
(Ω) ∫

Ω

|n(x , t) − n∞|2 . (102)

#We notice that in Haskovec et al,32 this problem was instead formulated in terms of gradient structure with the relative entropy as driving functional,
as it was done for the general reaction-diffusion-drift systems.

13849



DAVÍ

The first and last terms of (102) yield a first order equation which can be integrated to obtain at an expression alike (64):

||n(x , t) − n∞||2L1(Ω) ≤ (no ,n∞) exp
(
− 2𝛿
(Ω) t

)
, (103)

with
(no ,n∞) = ∫

Ω

|no(x) − n∞|2 . (104)

Accordingly the decay time 𝜏d can be estimated as

𝜏d ≤ (Ω)
2𝛿

= e(Ω)
2kB𝜃𝜇

. (105)

Whenever D = diag{D1 ,D2 , … ,Dk}, equation (100) reduces to the k independent classical diffusion equations:

D𝑗Δn𝑗 =
.n𝑗 , in Ω × [0 , 𝜏) , D𝑗 > 0 , 𝑗 = 1 , 2 , … , k , (106)

with Neumann boundary conditions, whose a complete mathematical treatment can be found into many books, like, e.g.,
Di Benedetto.106

5 CONCLUSIONS

For the reaction-diffusion-drift equation which describes the evolution and recombination processes of charge carriers
in scintillators, we gave an overview of the existence and asymptotic decay estimate which are known to date, at the best
of our knowledge. Despite the fact that the topics is a well-studied one, as the non-exhaustive list of references shows,
there are still many unanswered questions which deserves further investigations: here, we shall give a concise list of some
them. Such a list is of course far from be exhaustive and its items are those which seem more interesting for the physicists.

First of all, the mathematical treatment of the RDD system is based on a precise choice of the entropic term F(n),
namely, the Gibbs entropy: however, the physics of scintillation processes suggests that such a choice can be appropriate
into describing the behavior over a limited range of energy. The choice of Fermi–Dirac potential in place of the Gibbs
entropy will be not only more general but also more related to the true physical nature of the phenomena. Clearly, this
leads to a different formulation for the recombination term which requires a different mathematical treatment.

A second point of interest is the decay time estimate obtained for the RDD system: here, there are two major directions
for further investigations. The first one is to extend the results obtained into Fellner and Kniely14 for a system of two
charge carriers, k = 2 to systems with general k as most of the scintillator phenomenological studies require. The second
and more intriguing aspect is the following: the decay time estimate which follows from the result of Fellner and Kniely14

gives as an upper bound of the decay time the maximum between two values, one which depends on the carrier mobility
and the other which depends on the recombination time. When into Daví,9 we applied these results to four scintillating
crystals, not only we obtained a very good estimate of the fast decay time: we also notice that the minimum between these
two values looked like a lower bound for the slow decay time. Clearly, the results of Fellner and Kniely14 tells nothing about
this but it would be tempting to prove such an assertion. In such a case, we should have two bounds, an upper one on the
fast decay time and a lower one on the slow decay time, a result that would be appreciable in terms of material science.

A third remark is that the Entropic methods used to get these estimate should be applied also to the approximated
phenomenological models, in particular to the kinetic one: we need to remark that a very useful aspects of the results in
Fellner and Kniely14 is the explicit dependence of the estimates on the constitutive parameters of the RDD systems. This
should allow for a predictive use of these results, not only for an a-posteriori check with the available experimental data.

As far as the questions related to the existence issues for very general form of recombination term is concerned, the
necessity of further generalization does not need to be justified, since they are the foundation stone of any numerical
procedure we need to implement in order to obtain numerical solutions.

Finally, there are two side-aspects related to those we looked at in this paper and which we left out. The first one concerns
the solution of the Bethe–Bloch equation, which is a necessary requirement to bridge the microscopic world with the
phenomenological treatment we want to give to scintillation. To date there are many results which concern mainly the
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radiation decay length or the Bragg peak: a treatment which conveys in a straightforward way the relevant parameters of
the phenomena at the mesoscopic scale would be welcomed.

The second and in some sense more important problem we left out is the Ligth yield: such a parameter is indeed a
measure of scintillator effectiveness and tells us about the minimum energy we can detect. To date, there is not a coherent
mathematical definition for this parameter, apart a descriptive one:

LY =
Number of charge carriers recombined into photons

Total number of charge carriers generated
,

which in turns can be applied either locally or globally, whatever this means. Once again, a formal definition and its
consequent mathematical treatment are, in our opinion, still missing, and it would benefit from the huge amount of
experimental works which give a precise evaluation of Light Yield.
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