Minimal thermal modeling of two-way thermomechanically coupled plates is addressed in the framework of a unified formulation of the underlying continuum problem. Variably refined reduced-order models are considered, and some main features of the relevant transient and steady responses to a variety of active thermal sources are investigated, by properly reconstructing 3D temperature configurations and energy balances. In comparison with a richer reduced model and available analytical solutions, a model with assumed cubic temperature distribution along the thickness has the advantage of being the minimal one still allowing to consider a wide set of boundary and body thermal excitations, while showing a comprehensive capability to reliably describe the thermal response. This appears of particular interest also in view of further pursuing a systematic, yet computationally demanding, investigation of the nonlinear dynamics of the coupled plate, in the cheapest possible way from both the mechanical and thermal viewpoint.

Minimal thermal modeling of two-way thermomechanically coupled plates for nonlinear dynamics investigation / Saetta, E.; Settimi, V.; Rega, G.. - In: JOURNAL OF THERMAL STRESSES. - ISSN 0149-5739. - ELETTRONICO. - 43:3(2020), pp. 345-371. [10.1080/01495739.2019.1704669]

Minimal thermal modeling of two-way thermomechanically coupled plates for nonlinear dynamics investigation

Settimi V.;
2020-01-01

Abstract

Minimal thermal modeling of two-way thermomechanically coupled plates is addressed in the framework of a unified formulation of the underlying continuum problem. Variably refined reduced-order models are considered, and some main features of the relevant transient and steady responses to a variety of active thermal sources are investigated, by properly reconstructing 3D temperature configurations and energy balances. In comparison with a richer reduced model and available analytical solutions, a model with assumed cubic temperature distribution along the thickness has the advantage of being the minimal one still allowing to consider a wide set of boundary and body thermal excitations, while showing a comprehensive capability to reliably describe the thermal response. This appears of particular interest also in view of further pursuing a systematic, yet computationally demanding, investigation of the nonlinear dynamics of the coupled plate, in the cheapest possible way from both the mechanical and thermal viewpoint.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/290312
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact