
15 January 2025

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

Minimal thermal modeling of two-way thermomechanically coupled plates for nonlinear dynamics
investigation / Saetta, E.; Settimi, V.; Rega, G.. - In: JOURNAL OF THERMAL STRESSES. - ISSN 0149-5739. -
ELETTRONICO. - 43:3(2020), pp. 345-371. [10.1080/01495739.2019.1704669]

Original

Minimal thermal modeling of two-way thermomechanically coupled plates for nonlinear dynamics
investigation

Publisher:

Published
DOI:10.1080/01495739.2019.1704669

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/290312 since: 2024-04-28T13:04:29Z

This is the peer reviewd version of the followng article:



This is a post-peer-review, pre-copyedit version of the paper 

Minimal thermal modelling of two-way thermomechanically coupled 

plates for nonlinear dynamics investigation  

by Eduardo Saetta1, Valeria Settimi1, Giuseppe Rega1* 

 
1Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Italy 
*Corresponding author: giuseppe.rega@uniroma1.it 

 

 

Please cite this work as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Publisher link and Copyright information:  
 

 

 

Saetta, E., Settimi, V., Rega, G., Minimal thermal modelling of two-way thermomechanically coupled 
plates for nonlinear dynamics investigation, Journal of Thermal Stresses, 43(3), 345-371, 2020, DOI: 
10.1080/01495739.2019.1704669. 

You can download the final authenticated version of the paper and the supplementary material from: 
https://doi.org/10.1080/01495739.2019.1704669. 
© 2020 Taylor & Francis Group, LLC 
 
 
 
 

 
 
 
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. 

mailto:giuseppe.rega@uniroma1.it
https://doi.org/10.1080/01495739.2019.1704669


 

Minimal thermal modelling of two-way thermomechanically coupled plates for 

nonlinear dynamics investigation   

 

Eduardo Saetta, Valeria Settimi and Giuseppe Rega 

Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Rome, Italy  

Abstract:  Minimal thermal modelling of two-way thermomechanically coupled plates is addressed in the 

framework of a unified formulation of the underlying continuum problem. Variably refined reduced-order models 

are considered, and some main features of the relevant transient and steady responses to a variety of active thermal 

sources are investigated, by properly reconstructing 3D temperature configurations and energy balances. In 

comparison with a richer reduced model and available analytical solutions, a model with assumed cubic temperature 

distribution along the thickness has the advantage of being the minimal one still allowing to consider a wide set of 

boundary and body thermal excitations, while showing a comprehensive capability to reliably describe the thermal 

response. This appears of particular interest also in view of further pursuing a systematic, yet computationally 

demanding, investigation of the nonlinear dynamics of the coupled plate, in the cheapest possible way from both the 

mechanical and thermal viewpoint.  

 

Keywords: Composite plates, unified thermomechanical coupling, reduced-order models, thermal modelling, 

transient/steady response, global dynamics.  

1. Introduction 

Thermoelastic analysis of structures in a nonlinear dynamics environment is important for aerospace, civil 

and micro-electro-mechanical applications. Traditionally, it has been addressed via a solely one-way (from 

thermal to mechanical) approach in which the full thermomechanical interaction is overlooked, and the 

temperature distribution is assumed a priori, or obtained through the solution of the heat conduction 

equation, and considered just as an additional excitation in the forced mechanical equations to be solved 

subsequently. Using either low-dimensional models or models with a high number of degrees-of freedom 

also possibly validated by experimental tests, a meaningful variety of interesting results has been obtained 

as regards the influence of temperature on typical features of the nonlinear response of, e.g., beams [1-4] 

and plates [5-11], such as resonance curves, bifurcation scenarios, chaos occurrence, and mode 

involvement due to nonlinear and thermal couplings.         

The one-way approach relies on the reasonable assumption that the thermal dynamics evolves over a 

much slower time-scale than the structural dynamics, so that the former affects the latter but not vice versa. 

Due to such a slow nature of temperature evolution, structural dynamics equations are modelled with a 

constant or averaged temperature over a given structural time span, and reduced-order models (ROMs) 

based on vibration modes of the unheated structure are constructed, even though the need of using a time-

dependent basis of modes accounting for the even slow temperature variation has been highlighted, as well 

[12,13]. The last issue is comprehensively addressed in a recent study [14] in which a multiple time scale-

based approach is used to solve the temperature-dependent structural dynamics equations by accounting 

for the coexisting slow/fast thermal/mechanical settings.   

In contrast, fully coupled vibration analyses take into account the actual thermomechanical interaction 

entailed by the presence of displacement and temperature field variables in both mechanical and thermal 



equations. Two-way coupling (from thermal to mechanical, and from mechanical to thermal) has been 

considered both experimentally and numerically in the analysis of dynamic effects caused by impact 

loading in inelastic monolithic materials [15-18], up to the recent development of a three-dimensional (3D) 

multiscale approach for the prediction of dynamic response of composite materials based on the 

generalized method of cells micromechanics theory [19]. For structural elements with linear elastic 

constituents, actual thermomechanical coupling under quasi-static or dynamic loading has been considered 

in several investigations conducted via numerical (finite element [20,21] and CUF [22-24]) approaches. In 

the analysis of finite amplitude vibrations of geometrically nonlinear structures the scenario is less varied, 

because the case study-dependent nature and computational costs of purely numerical investigations 

strongly limit their ability to provide fundamental insight into thermal-structural interactions via 

parametric studies. Thus, in this context, developing ROMs suitable for nonlinear dynamics analyses is 

even more important, although model reduction in coupled domains is quite challenging. Low-order 

models allowing the description and understanding of a number of fundamental, yet varied and intriguing, 

nonlinear phenomena have been used, e.g., for plates [25-29], whereas a recently proposed multimodal 

expansion with two generalized thermal variables and the number of mechanical ones validated through 

experimental investigations has been used to analyse the effects of two-way thermomechanical coupling in 

beam vibrations [30].  

The present study is also framed within the dimension reduction issue, and aims at evaluating the 

reliability of a minimal thermal modelling of two-way thermomechanically coupled composite plates in 

view of systematic investigations of their nonlinear dynamics. Specifically, two main continuous two-

dimensional (2D) models of laminated plates with von Kármán nonlinearities [31,32], recently developed 

within the framework of a unified formulation of the thermomechanical problem based on Tonti’s 

approach to physical theories [33], are referred to. The two models neglect [31] or consider [32] shear 

deformability, and consistently assume a correspondingly linear or cubic variation of the unknown thermal 

field along the plate thickness. For the case of symmetric cross-ply laminates, proper and controllable 

dimension reduction can be accomplished for both 2D models via kinematic condensation of in-plane 

displacements [31,32] and shear angles [36,32] performed at the continuum and discretized level, 

respectively. Then, Galerkin modal reduction with a single assumed spatial dome-shape function for both 

mechanical and thermal variables allows to end up to minimal zero-dimensional (0D) models (with one 

mechanical and two thermal time-dependent equations/unknowns), which are suitable to analyse the 

nonlinearly coupled dynamic response in the absence of internal resonance between vibration modes. The 

ordinary differential equations (ODEs) of the two models are formally equal to each other, however with 

different coefficients and, more importantly, they still exhibit the fundamental features of geometrical 

nonlinearity and thermomechanical coupling embedded in the underlying, yet more complicated, 

continuous systems.  

The simpler (shear indeformable with linear temperature) minimal model, labelled CTC (Classical 

Thermomechanical Coupling), has been employed for extended investigations of the plate nonlinear 

dynamic response under both passive [34] and active [35] thermal conditions. The former refer to a 

situation in which thermal phenomena are merely dragged into the structure overall response by the solely 

existing mechanical transverse (distributed and harmonic) excitation, as a result of the existing full 

coupling; the latter account for the presence of also a thermal source (of variable nature), which entails 

direct activation of the plate temperature field, in addition to mechanical excitation. Investigations of local 

and global nonlinear dynamics have highlighted the transition to mechanically- or thermally-induced 

buckled responses, along with the variable role played by coupling effects in different excitation 

conditions. In particular, active thermal excitations have shown to be of major importance not only for 



originating distinct regimes of thermal response of interest in themselves, but also for meaningfully and 

steadily affecting the final outcome of the fast mechanical response via a non-trivial influence of the much 

slower transient phenomena which characterize the thermal dynamics; a behaviour unveiled via a quite 

refined use of topological information ensuing from global dynamics investigations [35].  

Both mentioned models (shear undeformable/deformable, with correspondingly assumed linear/cubic 

temperature distribution) have been validated in linear free dynamics and critical buckling, versus higher-

order finite element-based and analytical solutions available in the literature [32]. Yet, the major novelty of 

the accomplished continuum formulation and of the ensuing minimal modelling stands in complementing 

the assumed out-of-plane distribution of the mechanical variable with a consistent description of the 

transverse temperature which, depending on the assumptions’ refinement, may allow us (or not) to deal 

with the variety of thermal excitations of possible interest in technical applications, mostly as regards the 

role played by thermal boundary conditions. Thus, there is a clear need to validate the thermal responses 

obtained by the minimal models in both transient and steady regimes with respect to those provided by 

reduced thermal models of higher-order and/or by analytical solutions. This will certainly affect the 

possibility to get a comprehensive and reliable spatio-temporal understanding of the thermal response in 

itself, under different thermal excitations; but it might also produce effects on the steady – and indeed 

much faster – mechanical response, as possibly suggested by the non-trivial role played in this respect by 

the slow thermal transient, as highlighted in [35] for the simplest (CTC) minimal model. 

The analysis in the following aims at clarifying these points. It will be performed in view of identifying 

a minimal thermal modelling possibly representing the ‘best’ compromise among requirements of 

functionality, richness, flexibility and cheapness, to be variably taken into account in pursuing a 

systematic, yet affordable and reliable, investigation of the nonlinear dynamic response under different 

thermomechanical conditions, to be accomplished in a later stage.  

The paper is organized as follows. The general framework for multiphysics modelling referred to for 

implementing a minimal, coherent and controllable, dimension reduction of the 2D continuum in view of 

nonlinear dynamics investigations is sketched in Sect. 2. The main features of the reference Third-order 

Thermomechanically Coupled (TTC) model are summarized in Sect. 3, by also comparing them with those 

of richer/poorer models. Section 4 is the core of the paper and presents the reconstructed spatio-temporal 

thermal regimes at 2D and 3D continuum levels, in terms of energy balance and temperature configuration, 

as resulting from an in-depth analysis of the system response under different possible combinations of 

thermal (boundary and body) excitations. Cross-comparisons of the outcomes of minimal models 

embedding variable thermal approximations are performed, along with comparisons with those provided 

by some analytical solutions. The main effects of thermal modelling on some aspects of the mechanical 

response are analysed in Sect. 5, ending up to the detection of an economical, yet overall reliable, minimal 

model to be used for nonlinear dynamics analyses. A conclusion section ends the paper.   

2. A multiphysics modelling framework for minimal dimension reduction in nonlinear  dynamics 

The multiphysics modelling scheme of Fig.1 is based on Tonti diagram for physical theories [33]. It does 

not depend on the considered physics (symbolically indicated with 1,2, .. N) or on the possible space-

dimensional levels (indicated with 3D, 2D, 1D, 0D) that characterize the mathematical description of the 

engineering problem to be tackled. That is, regardless of physics involved and dimensional level 

considered, it is always possible to decompose the multiphysics model (top block in Fig.1) in the three 

components balance, configuration and phenomenology (left, right and bottom blocks in Fig.1). 

At 2D level, this scheme allowed to construct and compare different nonlinear continuous models for 

thermomechanical composite plate, resulting from different assumptions on the mechanical and thermal 



configuration of the plate (Table 1 of [37]); by way of example, Figure 2 of [34] shows the equations and 

variables of the scheme (Fig.1) when particularized to the CTC model (thermomechanical plate with 

composite material, von Kármán geometric nonlinearities, shear indeformability, linear temperature 

distribution along the thickness and full thermomechanical coupling). 

 

 

 

Figure 1.  Unified formulation scheme for 3D / 2D / 1D / 0D multiphysics models based on Tonti diagram for physical theories. 

At 0D level, starting from 2D continuous models, different nonlinear discrete models for 

thermomechanical composite plate were constructed and compared, resulting from different assumptions 

as to the greater or lower influence of various types of thermomechanical coupling (Table 2 in [37]; 

dynamical responses in [34], [35], [31]); as an example, in Fig.3 of [34] it is possible to see equations and 

variables of the scheme (Fig.1) when particularized to the CTCRa model (spatially reduced 



thermomechanical plate which preserves all the two-way modelling assumptions of the underlying 

continuous CTC model). 

The main purpose of this modelling framework is to construct, compare and select 0D minimal models 

for nonlinear dynamic analysis; for each specific nonlinear phenomenon and condition to analyse, we aim 

to use the model that represents the ‘best’ compromise among requirements of: 

1) functionality (ability to provide reliable descriptions of the phenomenon under examination); 

2) richness (quantity/quality of nonlinear characteristics preserved from the underlying continuous 

formulation, in order to allow exhaustive descriptions of the involved dynamics); 

3) flexibility (ability to consider a variety of thermomechanical assumptions, excitations and boundary 

conditions of technical interest); 

4) cheapness (ability to reduce both computational and result interpretation burden). 

3. Thermal features of TTC-0D model and comparison models 

We mainly consider the TTC-0D (zero-dimensional) thermomechanical model for the rectangular 

composite plate (Fig.2) presented in [32]. With reference to the above listed modelling requirements, the 

characteristics of this model are summarized in Table 1. 

About model functionality, Table 1 shows that only validation in linear free dynamics (prediction of the 

fundamental natural frequency) and linear stability (prediction of the critical mechanical and thermal 

buckling) were performed [32]. In the present paper, instead, validation is carried out as regards thermal 

aspects, by evaluating dynamical energy balances and temperature configurations provided by the model 

in post-processing at the higher dimensional levels (2D and 3D) of modelling. 

For all details about the TTC-0D model we refer to [32]; however, a brief summary of the main 

modelling features is provided.  
 

 

Table 1. Characteristics of the TTC-0D model about the considered modelling requirements. 

TTC-0D MODEL 

functionality Validation in linear free dynamics and mechanical/thermal critical buckling [32]. 

richness Cubic order assumption for displacement and temperature fields along the thickness, von Kármán 

 

Figure 2.  Laminated rectangular plate subjected to in-plane and transverse mechanical loads, and to body thermal 

sources distributed along the thickness.  

 



nonlinearity, full thermomechanical coupling. 

flexibility 

- Selectable options about thermomechanical coupling:  

i) null coupling, ii) only membrane, iii) only bending, iv) membrane-bending, v) one-way, vi) two-

way (full). 

- Selectable options about boundary conditions on up/down faces:  

i) free heat exchange, ii) thermal insulation, iii) prescribed temperature, iv) prescribed thermal flow. 

- Selectable options about boundary conditions on edges: 

i) in-plane movable edges, ii) fixed vertices, iii) prescribed temperatures. 

- Selectable options about excitation sources (Fig. 2): 

i) membrane and ii) bending mechanical load, iii) membrane and iv) bending thermal body source 

with linear overall distribution. 

cheapness  At most 3 nonlinear ordinary differential equations  

 

At the 3D level, the thermoelasticity coupled problem and the nonlinear Green’s strain tensor simplified 

under the assumption of small strains and moderate rotations (von Kármán strains) are considered. As 

regards specifically thermal aspects, to keep the energy equilibrium we started from the following entropy 

balance at 3D level [38]: 

( )
d 1

div
d a

s
E

t T
= − −q        

 
(1) 

where s is the entropy, q is the vector of the heat flow, ( , , , )aT x y z t  is the absolute temperature of the plate, 

and E is the source energy in a unit volume and unit time. Analytical manipulations (considering the 

Helmholtz free energy to express the entropy in terms of temperature and strains, and inserting the Fourier 

law to express the heat flow in terms of temperature) and the assumption / 1refT T   (where a refT T T= −  

is the temperature increment with respect to the reference temperature 
refT ) allow us to obtain the 

following linear thermomechanically coupled heat conduction equation for the orthotropic body [38] (the 

lower index after the comma denotes partial differentiation) 

( )11 , 22 , 33 , , 11 11, 22 22, 0xx yy zz v t ref t tT T T c T T E       + + − − + + = ,       
 

(2) 

which is obtainable in [32] by inserting Eqs.(46), (47), (50), (53) and (18) into Eq.(28), and enters the top 

block in Fig. 1 along with the mechanical equations. In Eq.(2), the first three terms express the conductive 

flow ( ij are the thermal conductivities), the fourth term is relative to the internal energy ( vc is the 

thermal capacity, with   mass density and vc specific heat), and the fifth term represents the 

thermomechanical coupling (
ij  are the thermoelastic coefficients and 

,ij t
 
the strain rates). 

At the 2D level, the basic assumptions consist of considering third-order shear deformability and von 

Kármán nonlinearities together with a consistently assumed cubic variation of the temperature along the 

plate thickness. By properly combining configuration, phenomenological and balance multiphysics 

relations, seven (five mechanical and two thermal) partial differential equations of motion are obtained in 

terms of seven unknown 2D configuration variables (Fig.1, top block) together with the corresponding 

boundary conditions [32]. 

At the 0D level, upon in-/out-of-plane static condensation and minimal Galerkin reduction, the balance 

equations (Fig.1, left block) of the TTC-0D model are: 



11 12 13 14 15 16 17 18 0F F F F F F F F+ + + + + + + =
     

(0D membrane-bending mechanical balance)
 (3a)    

21 22 23 24 25 26 0F F F F F F+ + + + + =  (0D membrane thermal balance) (3b)    

31 32 33 34 35 36 0F F F F F F+ + + + + =
 

(0D bending thermal balance) (3c)    

where the quantities ijF
 
can be expressed in terms of 0D configuration variables (one mechanical and two 

thermal), thus obtaining three fundamental governing equations (Fig.1, top block) with structure and 

coefficients depending on geometric and physical characteristics of the plate, boundary conditions, and 

excitation sources [32]. 

With reference to the sole thermal balance equations (3b, c), which will be considered in the following, 

the balance contributions ijF
 
are linked to typical physical quantities that characterize the non-stationary 

thermomechanical phenomenon described by Eq.(2); these are the energy-type quantities (thermal powers) 

schematically shown in Table 2: conductive flows, internal energy, thermomechanical coupling energy and 

source energy. The table also indicates the energy contributions analogous to ijF
 
but related to the thermal 

balance equations at the upper 2D and 3D levels of modelling, that is equations (28) and (29) in [32] which 

for convenience are reported below: 

(0) (0) (0) (0) (0) (0)

1, 2, , , 0x y t tq q b a Q E+ − − + + =  (2D membrane thermal balance) (4a) 

(1) (1) (1) (1) (1) (1)

1, 2, , , 0x y t tq q b a Q E+ − − + + =  (2D bending thermal balance) (4b) 

1, 2, 3, , , 0x y z t tq q q b a E+ + − − + =
 

(3D thermal balance, common to all considered models) (5) 

 

To construct the thermal part of the TTC-0D model, the passage from 3D level to 2D level is 

characterized by the following assumed cubic order polynomial shape for the 3D temperature along z 

direction (plate thickness): 

2 3

0 1 2 3 0 1( , , , )           ( , , , ) ( ) ( ) ( )a b cT x y z t T zT z T z T T x y z t f z T f z T f z= + + + → = + +  ,      
 

(6) 

where ( , , , )T x y z t  is the plate temperature field at 3D level (temperature increment with respect to natural 

state of reference), 0 ( , , )T x y t  and 1( , , )T x y t
 
are the independent temperature variables at 2D level, while 

2 ( , , )T x y t  and 3( , , )T x y t
 
are quantities that can be expressed in terms of the independent variables, 

leading to the second expression in Eq.(6) in which fi (z) are cubic functions with coefficients depending 

on the considered boundary conditions [32]. 

 

 

 

Table 2. Energy contributions present in the thermal balance of TTC-0D model (Eqs. (3b, c)) and in the thermal balances at 2D 

(Eqs. (4)) and 3D (Eq. (5)) levels. 

DESCRIPTION 0D  CONTRIBUTION  2D CONTRIBUTION  3D CONTRIBUTION  



contribution due to space variation along x 

of conductive flow 1q   
21F , 31F  

(0)

1,xq  , 
(1)

1,xq   
1,xq  

contribution due to space variation along y 

of conductive flow 2q  
22F , 32F  

(0)

2, yq
 
, 

(1)

2, yq   
2, yq  

contribution due to space variation along z 

of conductive flow 3q  
23F , 33F  (0)Q , 

(1)Q   3,zq  

contribution due to time variation of  

internal energy b   
24F , 34F   

(0)

,tb , 
(1)

,tb  
,tb  

contribution due to time variation of  

coupling energy a   
25F , 35F  

(0)

,ta ,
(1)

,ta   
,ta  

contribution due to  

source energy E  
26F , 36F  (0)E , 

(1)E  E  

 

Then, we passed from 2D level to 0D level by assuming the following spatial shapes (dome-shape) for 

the 2D thermal variables along x and y directions (plate middle plane): 

( )0 0( , , ) ( ) sin sinm m

e R e

x y
T x y t T T t T

a b

 
= + −     (7a) 

( )1 1( , , ) ( ) sin sinb b

e R e

x y
T x y t T T t T

a b

 
= + −

 
(7b) 

where 0 ( )RT t
 

and 1( )RT t  are the unknown reduced thermal variables (membrane and bending, 

respectively) of the TTC-0D model, while m

eT
 
and b

eT
 
are the components (membrane and bending) of the 

temperature prescribed on the plate edges. 

The thermal response of the TTC-0D model just summarized will be compared with those provided by 

an equally cheap but less rich and flexible model (CTC-0D), and by a richer and more flexible but less 

cheap model (STC-0D), both referred to below. 

The shear-undeformable CTC-0D model presented in [31] (to refer to for all details) is characterized by 

the assumption of linear distribution of the 3D temperature along z-direction (plate thickness): 

0 1( , , , )T x y z t T zT= +     (8) 

(already defined symbols of Eq. (6)), and by the same assumption of TTC-0D for the 2D temperature 

variables (Eqs. (7)). With reference to Table 1, CTC-0D is less rich than TTC-0D as regards displacement 

and temperature distribution assumptions, it is less flexible because it allows to select only free heat 

exchange condition on the external up/down faces, and it is equally cheap because it has at most 3 balance 

equations formally equal to Eqs. (3) of TTC-0D (same structure, however with simpler/different 

expressions of the coefficients). 

On the other hand, still referring to the sole thermal aspects, the STC-0D model is characterized by a 

polynomial seventh order shape for the 3D temperature along z direction (plate thickness): 

2 3 4 5 6 7

0 1 2 3 4 5 6 7( , , , )T x y z t T zT z T z T z T z T z T z T= + + + + + + +   
 

(9) 

(already defined symbols of Eq. (6)), with possibility (as in the TTC-0D model) to express two variables at 

2D level in terms of the others through the boundary conditions; the assumption on the 2D independent 



temperatures is similar to that of Eqs. (7) relative to TTC-0D, but contains more unknown reduced 

variables ( )RiT t  because there are more variables at 2D level. With reference to Table 1 and focusing on 

the thermal aspect, STC-0D is considerably richer than TTC-0D about assumption on temperature 

distribution, it is more flexible because it allows to select also nonlinear source energy and boundary edge 

conditions, but it is less cheap because it has 6 energy balance equations (instead of 2 of the TTC-0D 

model). 

When thermomechanical coupling does not significantly affect the thermal response, and for some 

boundary conditions, the responses of the aforementioned models will also be compared with those of two 

exact analytical solutions, one of non-stationary conduction and the other of stationary conduction 

(provided in Appendices A and B, respectively; see the electronic supplementary material, where all 

Appendices are reported).  

4.  Analysis of thermal regimes at continuum levels with energy/temperature evaluation 

In the following, three different cases of thermal (boundary/body) excitation will be considered to analyse 

and compare thermal regimes furnished by the models in Sect.3. 

Case 1 refers to a thermal boundary condition of the first kind (according to a widely used classification 

[40]), where all the outer surfaces of an isotropic square plate are instantaneously heated to the same 

temperature. TTC-0D and STC-0D model are compared with each other, and with a non-stationary 

conduction analytical solution [40] assumed as reference (Appendix A). The outcome of the most refined 

STC-0D model is seen to be closer to the analytical solution than the TTC-0D outcome, and STC-0D is 

thus assumed as reference in the other two cases. 

Case 2 refers to a mixed thermal boundary condition of second and first kind [40], where prescribed 

thermal flow and temperature are imposed on the up and down outer surfaces, respectively, of a thermally 

orthotropic square plate. A stationary conduction analytical solution [39] (Appendix B) is used to verify 

the response of the models after the non-stationary conduction phase. 

Case 3 refers to a thermal boundary condition of third kind [40] with additional body source, where a 

free heat exchange is allowed on the up/down outer surfaces of a thermally orthotropic square plate, while 

a source energy acts inside the plate. Free heat exchange is the sole boundary condition to be possibly 

prescribed on the up/down faces with the simpler CTC-0D model, whose outcomes are also considered in 

the comparisons. This model, in fact, is strongly limited by the assumption of linear distribution of the 3D 

temperature (Eq.(8)); indeed, for example, if a prescribed temperature were imposed on the outer surfaces, 

it would be instantaneously accommodated by the linear distribution on the thickness, and no thermal 

dynamics would be possible; similar considerations can be made when a prescribed thermal flow is 

assigned, a case in which the dynamics would be excessively constrained [31]. 

Although the present modelling framework accounts for two-way (from mechanical to thermal, and 

from thermal to mechanical) coupling, we neglect the mechanical coupling terms in the thermal equations 

of the models (terms 25F , 35F  in Eqs.(3b,c)), for the sake of simplicity. In fact, when an active thermal 

regime is considered, their effects in the thermal equations are negligible with respect to the direct ones of 

the applied thermal loads [41]. 

4.1 Case 1: Temperature prescribed on the up/down faces and edge faces 

We consider an isotropic square plate of side 1 ma = , thickness 0.05 mh = , and material AL2024 with 

mass density 2800 =  kg/m3 and the following thermal properties [32]: specific heat at constant strain 



897vc =  J/(kg∙K), thermal conductivities along the x, y and z axes 11 22 33 130  = = = W/(m∙K), thermal 

expansions along x and y 6

1 2 25 10  −= =   1/K. 

At the initial time instant all the 6 external faces of the plate are instantaneously heated to the same 

temperature, which is then maintained constant. To reproduce this condition in the present modelling 

framework, we impose on the up/down faces: 

 *

/2z h
T T

=
= ,  (10) 

where the first member expresses the plate temperature ( , , , )T x y z t  at the lowest and highest levels, while 

the second member expresses the prescribed temperature *T on the outer faces. We impose the same 

spatially constant temperature *T also on the edge faces, by setting into Eqs. (7): 

*m

eT T= ,   0b

eT =   (11) 

For these boundary conditions, thermal balance equations (3b,c) of the TTC-0D model in terms of  

unknowns 0 ( )RT t  and 1( )RT t  (membrane and bending temperatures) read [32] (Fig.1, top block): 
* (0)

21 0 22 0 23 252 ( ) 0R Ra T a T a T a e t+ + + =       (12a) 

(1)

31 1 32 1 34 ( ) 0R Ra T a T a e t+ + =

 

           

(12b) 

where the dot denotes time derivative, 
(0) ( )e t  and (1) ( )e t  represent thermal excitation sources (see Sect. 4.3 

forward), and expressions of coefficients ija  are reported in Appendix C; note the non-sequential 

coefficients numbering due to the neglected mechanical coupling terms. The corresponding equations for 

the STC-0D model are reported in Appendix D.
 

Setting * 100 KT = and body source energy equal to zero, Eqs.(12) provide the thermal dynamics 

shown in Fig. 3: since imposed conditions are symmetrical, the bending component 1( )RT t  is not activated. 

The relative energy contributions to the membrane thermal balance (Eq.(3b)) is shown in Fig. 4a  

together with  their sum, which at 0D level is always zero for obvious mathematical reasons. 

Remembering physical quantities which each of these contributions is linked to (Table 2), we can

 

 
Figure 3. Case 1, time history of the thermal variables of TTC-0D model. 



recognize the essential characteristics of the thermal phenomenon under examination already at 0D level 

(Fig. 4a): the temperature prescribed on all the outer faces activates a non-stationary conduction where the 

increase of internal energy (red) balances the decrease of conductive flows (blue, green, magenta) at each 

time instant, until thermal equilibrium is reached (when all internal points of the plate have reached the 

temperature of 100 K prescribed on the external faces). The contributions related to conductive flows 

along x and y directions (green and magenta) are not perceptible in Fig. 4a because they are very small 

compared to the flow contribution along z (blue), due to the small plate thickness considered. 

Analogously to Fig. 4a, Figure 4b shows the energy contributions to the 2D membrane balance (Table 

2, Eq. (4a)) for the point in the centre of plate mid-plane, and is obtained in post-processing from the time 

history of the 0D model variable 0 ( )RT t  (TTC-0D). We can see (Fig. 4b, dashed black line) that the 2D 

balance is satisfied at all times; this also happens at all points of the plate mid-plane, as confirmed by the 

exact closed form solution obtained for Eq. (4a) expressed in terms of temperature, particularized for this 

case and without thermomechanical coupling and source contributions (Appendix E).  

 

 

 
 

Figure 4. Time history of energy contributions to the membrane thermal balance at 0D (a) and 2D (b) levels, and of their 

sum, for the TTC-0D model. Colours (on-line): contributions due to internal energy (red) and to conductive flow along z 

(blue), y (green), and x (magenta), and their sum (black dashed) 

 
 

 

Figure 5. Time history of energy contributions to thermal balance 3D, and of their sum, in the centre of solid  

( / 2,  / 2,  0x a y b z= = = ), associated with TTC-0D (a) and STC-0D (b) model. Colours (on-line): contributions due to 

internal energy (red), and to flow along z (blue), y (green), and x (magenta), and their sum (black dashed) 

 



Figure 5a shows the energy contributions to the 3D balance (Table 2, Eq. (5)) for the point in the centre 

of the solid (always obtained in post-processing, starting from the response of the 0D model). Contrary to 

the 2D level (Fig. 4b), in the 3D balance the time-varying contributions due to internal energy and 

conductive flow along z are not symmetrical with each other, thus producing an energetic imbalance 

(dashed black line) which is also present with a variable degree in all points of the solid. It depends on the 

3D temperature configuration ( , , , )T x y z t  ensuing from the assumed modelling (Eqs. (6) and (7)), whose 

mathematical characteristics (derivatives at every point and instant) differ from those of the analytically 

exact solution of the 3D problem. In fact, the 3D balance of Eq. (5) in terms of temperature (neglecting 

coupling terms) is expressed by the heat equation: 

11 , 22 , 33 , , 0xx yy zz v tT T T c T   + + − = ,  (13) 

where curvature terms of the temperature function with respect to space (second derivatives ,ii jjT , due to 

conductive flow) should be balanced by the tangent line term with respect to time (first derivative ,v tc T , 

due to internal energy). 

Figure 5b shows the 3D balance for the model STC-0D, analogous to Fig. 5a. The energetic imbalance 

(dashed black line) reaches its minimum value much faster than for the TTC-0D model (Fig. 5a), due to a 

diagram of single contributions that is globally more symmetrical than that in Fig. 5a. Actually, it can be 

noted that at the initial instant and in the first few hundredths of second, a marked energetic imbalance 

occurs for STC-0D (Fig. 5b), higher than the TTC-0D one. This is because at 0 t s= the internal energy 

contribution (red line in Fig. 5b and term ,v tc T
 
in Eq.13) is very large, while the conductive flow 

contribution (blue line in Fig. 5b and term 33 ,zzT
 
in Eq.13) is zero; thus, in these initial instants, the 

seventh-order shape assumed for the temperature in the formulation of STC-0D model (Eq. (9)) loosely 

satisfies the heat equation (13). 

However, in general, the energetic imbalance of the models at certain points and instants provides no 

direct hints as to how much the thermal response is close to (or away from) the real one. Thus, to evaluate 

the response provided in this case by the two models, in the following we assume as reference the non-

stationary analytical solution in convergent series reported in Appendix A.   

The above shown 3D energy imbalances of TTC-0D and STC-0D are superimposed in Fig. 6b and the 

corresponding 3D temperature curves are shown in Fig. 6a, by also reporting the graphs provided by the 

non-stationary analytical solution with 5 or 20 terms in the series. The temperature curve of STC-0D (blue) 

agrees well with that provided by the 20-term analytical solution (gray), which is here assumed as 

benchmark. The temperature curve of the 5-term analytical solution (green) provides a bad estimate at the 

first seconds of conduction, because it starts from a high and unrealistic negative temperature value, but 

then it approaches the curves of greater precision. The temperature curve of TTC-0D model (red) correctly 

presents a zero temperature value at the initial instant and grows without inflection points, however 

overestimating the transient temperature. 

The balance aspects are checked in more detail in Fig. 6c,d, by comparing the single energy-type 

contributions to the 3D balance of the two models with those deduced from the analytical solution. For the 

STC-0D model, both the internal energy contribution b  and the conductive flow contribution 3q  along z 

are very close to the reference quantities; instead, the TTC-0D model shows greater deviations. 

Figure 7 shows the temperature curves along the thickness, at the instants 0 st = , 0.3 st = , 10 st =  

and 30 st = , respectively. Remembering the boundary conditions of this case, at 0t =  the real 

temperature is zero along the whole thickness except at the extreme levels (where it is 100KT = ); 

therefore, neither TTC-0D nor STC-0D allow to describe well the real temperature at the initial instant 

(Fig. 7a). Compared to TTC-0D, STC-0D produces a better profile due to the seventh-order assumption in  



 
Figure 6. Time history of 3D temperature (a),  energy contributions sum (b), single contributions due to internal energy (c) and 

to conductive flow in z direction (d), in the centre of solid ( / 2,  / 2,  0x a y b z= = = ), for TTC-0D (red) and STC-0D (blue) 

models, and with the 5-term (green) and 20-term (gray) analytical solutions. (Colours on-line) 

 

Eq.(9) but, if a better descriptive capacity were required, it would be necessary to consider a model with a 

higher temperature order. 

Compared to TTC-0D, STC-0D produces a better profile due to the seventh-order assumption in Eq.(9) 

but, if a better descriptive capacity were required, it would be necessary to consider a model with a higher 

temperature order. However, just after the initial instant, the temperature profile of the STC-0D model 

remains (for the whole time evolution) very close to that of the 20-term analytical solution; instead, the 

TTC-0D model shows a general overestimation of the temperature (Fig. 7b,c). As regards energy balance 

aspects along the thickness (graphs not reported for the sake of brevity), the shapes of the STC-0D 

contributions due to both the internal energy b and the conductive flow 3q  along z
 
are overall more similar 

(and closer) to the reference quantities than the corresponding ones of TTC-0D; this does not occur for the 

quasi-stationary ( 30 st = ) 3q
 
flow of STC-0D, which is considerably away from the reference one, 

although the temperature equal to 100 K is correctly provided (Fig.7d). This is due to the seventh-order 

shape assumed for the temperature of STC, that globally improves the thermal response (with respect to 

TTC) but introduces residual numerical balance errors at the end of the dynamics.  

Figure 8 shows the temperature graphs plotted along x direction, at mid-plane level and y half-size. 

Remembering again the boundary conditions, at 0t =  s the real temperature is zero along the whole x 

direction except on the edges (where it is 100 KT = ); therefore in Fig. 8a, unlike Fig.7a related to the  



 
                                  (a)          (b) 

                                  

                                  (c)          (d) 

 

Figure 7. Temperature profiles along z (thickness) direction, in the central point ( / 2,  / 2x a y b= = ), at instants: 0 st =   (a), 
0.3 st =  (b), 10 st =   (c), 30 st =  (d), . Colours (on-line): TTC-0D (red) and STC-0D (blue) models, 5-term (green) and 20-

term (gray) analytical solutions. 

 

temperature profile along the thickness, STC-0D (although providing the correct temperature in the centre) 

implies the same shape error of TTC-0D, which still persists (Fig.8c) until about the steady conditions (

30 st = , Fig. 8d). This is due to the different mathematical assumption of the prescribed constant 

temperature on the boundary with respect to the assumed internal 2D dome-shape temperatures. To 

improve the approximation, a multimodal thermal shape along x and y could be considered instead of the 

single-mode one (see Eq.7 related to TTC), but this would result in an increase of the number of equations.  

Based on the analyses carried out, a few summary points can be made. 

(i) In the centre of the plate/solid, the most refined STC-0D model is very close to the 20-term 

analytical solution (for the whole time evolution). Instead, the TTC-0D model (slightly) 

overestimates the temperature during the transient.  



(ii) Such response features of the two models also hold in the centre along the whole thickness, 

with STC better approaching the expected physical temperature distribution also in the very 

first initial instants. 

(iii) Along the x direction, at mid-plane level and y half-size, STC-0D implies almost the same 

shape error of TTC-0D during the transient, due to the different assumptions for the 2D internal 

and the boundary prescribed temperatures. 

Based on these results, in the following two cases the model STC-0D will be assumed as reference to 

compare cheaper models as TTC-0D and CTC-0D. However, to eliminate the error shape along the 

direction of plate edges (point (iii)), the same dome-shape spatial distribution of thermal loads as of the 2D 

internal temperatures will be assumed. 

4.2  Case 2: Flow and temperature prescribed on the up/down faces 

We consider a square single-layer epoxy/carbon fibre composite orthotropic plate of side 1 ma = , 

thickness 0.1 mh = , with mass density 1940 =  kg/m3 and thermal properties [35]: specific heat at 

constant strain 400vc =  J/(kg∙K), thermal conductivities along x, y and z 11 22 3336.42,  0.96  = = =   

W/(m∙K), thermal expansions along x and y 6 6

1 20.57 10 ,  35.6 10 − −=  =   1/K, boundary conductance 

100H =  W/(m2∙K).  

 

 

Figure 8. Temperature profiles along x direction, at points / 2,  0y b z= = , at instants 0 st =   (a), 0.3 st =  (b), 10 st =   (c), 

30 st =  (d) . Colours (on-line): TTC-0D (red) and STC-0D (blue) models, 5-term (green) and 20-term (gray) analytical 

solutions.  

 

 



At the initial instant an irradiation thermal flow acts on the upper face, while the lower face is 

instantaneously heated to a given temperature; both thermal loads are considered constant during the 

whole thermal process. At the edges, temperature variations are prevented (cold edges). 

To reproduce this condition, we impose on the faces: 

*

3 /2
sin sin

z h

x y
q q

a b

 
=−

=   (14a) 

*

/2
sin sin

z h

x y
T T

a b

 
=

=

 

 (14b) 

where the l.h.s. express the conductive flow 3( , , , )q x y z t  (z-direction) and the plate temperature 

( , , , )T x y z t  at the extreme levels, respectively, while the r.h.s. express the prescribed flow and 

temperature (with amplitudes *q  and *T ) on the outer faces; we assume that both these thermal loads have 

a trigonometric spatial shape, coinciding with the one assumed for the internal distribution of 2D 

temperatures (dome-shaped, Eq. (7)). To impose a zero temperature variation on the edges (cold edges), let 

us put 0m b

e eT T= =
 
in Eq. (7). 

For these boundary conditions, thermal balance equations (3b,c) of the TTC-0D model in terms of 

unknowns 0 ( )RT t  and 1( )RT t  (membrane and bending temperatures) read [32]: 

* * (0)

21 0 22 0 23 1 24 1 25 26 28 ( ) 0R R R Ra T a T a T a T a q a T a e t+ + + + + + =  (15a) 

* * (1)

31 0 32 0 33 1 34 1 35 36 38 ( ) 0R R R Ra T a T a T a T a q a T a e t+ + + + + + =  (15b) 

with (0) ( )e t  and (1) ( )e t  thermal excitation sources, and coefficients ija
 

given in Appendix C. The 

corresponding equations for the STC model are reported in Appendix D.
 

Setting * 3 22 10  W/mq =  , * 10 KT =  and body source energy equal to zero, Eqs.(15) provide the 

thermal dynamics shown in Fig.9 . Contrary to previous Case 1, here also the bending component 1( )RT t
 
is 

activated, since the thermal loads on the upper and lower faces are not symmetrical. Moreover, the 

different nature of the two thermal boundary conditions of this mixed case implies a coupling between 

equations (15), whose equal structure entails that the variables 0 ( )RT t  and 1( )RT t
 
reach the stationary 

phase at the same time (considerably longer than that of Case 1 for physical reasons). 

 

 

 
Figure 9. Case 2, time history of the thermal variables of TTC-0D model. 



The graphs of the relative 2D energy contributions (obtained in post-processing from the TTC-0D 

model response and not reported) show that the 2D membrane and bending balances are satisfied at all 

times and all points of plate mid-plane, as confirmed by the exact closed form solution obtained for 

Eqs.(4a, b) (expressed in terms of temperatures) and reported in Appendix F for the present case. 

Figure 10a shows instead the corresponding graphs of the 3D energy balance contributions (Table 2, 

Eq. (5)) in the central point of the solid (always obtained in post-processing). With respect to the isotropic 

plate of Case 1, the flows along x and y furnish different contributions, due to the marked difference of the 

corresponding thermal conductivities for the orthotropic plate considered herein. The energetic imbalance 

(dashed black line) strongly decreases as the conduction stationary state is approached, up to stabilizing 

onto a value of about 32576 W/m . To evaluate the modelling error provided in this case by the TTC-0D 

model, some comparisons are made. 

The imbalance of STC-0D is also shown in Fig.10a (dashed blue line); it reaches its barely detectable 

minimum value (about 30.38 W/m ) much faster than TTC-0D does with its minimum. Figure 10b shows 

the corresponding 3D temperatures, where the curves of the two models are seen to be very close, with 

steady values of about 36.4 K (TTC-0D) and 37.3 K (STC-0D). Like Case 1, the STC-0D model involves 

a marked energetic imbalance at the very beginning of the dynamics (Fig. 10a), which however does not 

significantly affect the temperature values.  

Figure 11 shows the temperature predictions provided by the two models in the central point of the 

plate along the thickness, at 0 t s= , 200 t s= and 8000 t s= . The quite dissimilar temperatures initially 

provided by the two models (mostly at the upper points far away from the mid-plane) still persist at 

200 st =  (Fig. 11b); however, when the stationary state is reached, the corresponding temperature curves 

are almost coincident, with the STC-0D one perfectly coinciding with the curve (gray, but not visible) of 

the exact stationary analytical solution (Appendix B).  

As regards the energy balance aspect along thickness (graphs not reported), at stationary state (

8000 st = ) the STC-0D model is well balanced while the TTC model shows an imbalance. It can be 

mathematically explained by remembering the cubic assumption of temperature 3D (Eq.(6)) and observing 

the consequent curves of the single contributions ,tb ,

 
3.zq ,

 
2. yq , 1.xq  to the 3D balance (Eq.(5), Table 2), 

not 
 

 

  
 

Figure 10. Time history of energy contributions to 3D thermal balance, and of their sum, for the TTC-0D model, and sum 

of energy contributions, for the STC-0D model (a); 3D temperatures for TTC-0D and STC-0D models (b); all in the centre 

of solid  ( / 2,  / 2,  0x a y b z= = = ). Colours (on-line): TTC-0D contributions due to internal energy (red), to flow along z 

(blue), y (green), and x (magenta), and sum of contributions (black dashed); STC-0D sum of contributions (blue dashed) 

(a); TTC-0D (red) and STC-0D (blue) temperatures (b). 

 

 

 



shown for the sake of brevity. While the internal energy contribution ,tb  correctly vanishes, the flow 

contribution 3.zq ,  which is a linear curve (
3, 33 ,z zzq T= ), is unable to balance along the thickness the flow 

contribution 
1,xq , which is a nonlinear curve ( 1, 11 ,x xxq T= ) (the contribution 2, yq  is small compared to 

1,xq  because the material is strongly thermally orthotropic). Instead, the STC model does not show 

imbalance because also the contribution 3.zq  is a nonlinear curve (remind the temperature assumption of 

Eq.(9)), which is able to balance the nonlinear contribution 1.xq  along the thickness. 

Graphs along x and y directions (like Fig. 8 of Case 1) are not shown; in fact, they do not exhibit any 

shape error as regards temperature distribution, because the flow and temperature prescribed on the 

external faces in the present case have been given the same dome-shape as for the 2D internal temperatures 

(compare Eqs. (14) and (7)). Instead, in the case of different spatial distributions of thermal loads on the 

faces, an error would occur due to the coarse monomodal assumption of the internal temperatures. 

4.3  Case 3: Free heat exchange on the up/down faces and active source energy 

We consider a square single-layer orthotropic plate of side 1 ma = , with the same properties of case 2. A 

free convective exchange with the surrounding medium is allowed on the up/down outer faces. At the 

initial instant a body source energy acts inside the plate (due, e.g., to the passage of electric current), with 

intensity varying proportionally along the thickness between two assigned extreme values. This thermal 

load is maintained constant during the whole process. At the edges, temperature variations are prevented 

(cold edges). 

To reproduce the condition on the faces, we impose: 

 3 /2/2
( ) hz h

q H T T =
=  −    (16) 

where the l.h.s. expresses the conductive flow 3( , , , )q x y z t  (z-direction) at the up/down levels of the 

plate, while the r.h.s. expresses Newton's law of cooling, with H  convection coefficient and T  
constant 

temperature difference between the absolute temperature of surrounding medium and the reference one. 

Note that this is the sole boundary condition on the external faces to be possibly prescribed with the 

 

(a)  (b)  (c) 

 

Figure 11. Temperature profiles, along z (thickness) direction, in the central points ( / 2,  / 2x a y b= = ), at instants 0 st = (a), 

200 st = (b), and 8000 st = (c).  Colours (on-line): TTC-0D (red) and STC-0D (blue) models, exact stationary analytical 

solution in Appendix B (grey). 



simpler CTC model (based on a linear distribution of 3D temperature along the thickness, Eq. (6)), whose 

outcomes will be then considered in the following comparisons, too. To impose a zero temperature 

variation on the edges, let us put 0m b

e eT T= =
 
in Eq. (7). 

To consider the thermal load distribution linearly varying along the thickness, the following law for the 

body source energy E (Fig.12) is assumed in the 3D balance (Eq. (5), Table 2): 

( , , , ) ( , , ) ( , , )C LE x y z t E x y t z E x y t= +    (17) 

where a trigonometric shape is given to the membrane ( , , )CE x y t  and bending ( , , )LE x y t  sources (the 

same dome-shape as that of 2D temperature variables in Eq.(7)): 

(0)( , , ) ( )sin sinC x y
E x y t e t

a b

 
=    (18a) 

(1)( , , ) ( )sin sinL x y
E x y t e t

a b

 
=

 
 (18b) 

The source energies (0) ( , , )E x y t  and (1) ( , , )E x y t   of  2D balance (Eqs. (4), Table 2) are linked to the 3D 

source energy E of Eq.(17) by the relationship [32,35]: 

/2
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/2
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h
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−
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/2
(1)

/2
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h
E zEdz

−
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For these boundary conditions, thermal balance equations (3b,c) of the TTC-0D model in terms of 

unknowns 0 ( )RT t  and 1( )RT t  (membrane and bending temperatures) are [32]: 

(0)

21 0 22 0 23 25 ( ) 0R Ra T a T a T a e t+ + + =  (20a) 

(1)

31 1 32 1 34 ( ) 0R Ra T a T a e t+ + =

 

(20b) 

with (0) ( )e t  and (1) ( )e t  thermal excitation sources,
 

and coefficients ija
 

given in Appendix C. The 

corresponding equations for the STC model are reported in Appendix D, while those of the CTC model 

have the same structure of the TTC ones (with different coefficients). 

Setting (0) 4 32 10  W/me =   and (1) 6 42 10  W/me =  , 0.1 mh = , 0T = , Eqs.(20) provide the thermal 

dynamics shown in Fig.13.  
 

 

 
 

Figure 12. Contributions to the body source energy distribution along the plate thickness. 

 

 

 



Contrary to the previous Case 2, the equal boundary conditions prescribed on the upper and lower faces 

imply decoupling of the two equations (20), with the independent dynamics of the two variables having 

speeds (quite different from each other for physical reasons) governed by the coefficients 21a  and 31a . 

The graphs of the relative 2D energy contributions (not reported) show that the 2D membrane and 

bending balances are satisfied at all times and all points of plate mid-plane, as confirmed by the exact 

closed form solution obtained for Eqs.(4a,b) (expressed in terms of temperatures) and reported in 

Appendix G for the present case.  

 Figure 14a compares the 3D temperature curves provided by TTC-0D with those of STC-0D and CTC-

0D models, in the central point of the solid, while Figure 14b shows the corresponding energy imbalances. 

The CTC-0D model exhibits the highest energy imbalance and a temperature curve very far from those of 

the other two models (with a stationary value significantly lower); instead, the temperature curves of TTC-

0D and STC-0D are quite close to each other. 

Figure 15 shows the temperature predictions provided by the three models in the central point of the 

plate along the whole thickness, at 0 t s= , 100 t s=  and 6000 t s= . All models exhibit a more marked 

temperature increase in the lower part of the plate, due to the considered power density distribution along 

the thickness (Fig. 12); however, the maxima of the more refined models are not located at the up/down 

surfaces, possibly due to heat dissipation towards the environment occurring therein.  

 

 

 
 

Figure 13. Time history of the thermal variables of TTC-0D model. 

 

     
 

Figure 14. Time history of 3D temperature (a) and energy contributions sum (b), in the centre of solid                                    

( / 2,  / 2,  0x a y b z= = = ), 0.1 mh = , for TTC-0D (red), STC-0D (blue) and CTC-0D (orange) models. (Colours on-line). 



In the stationary phase ( 6000 t s= , Fig. 15c), the temperature profile of CTC-0D exhibits a considerable 

deviation from those of TTC-0D and STC-0D, which are instead very close to each other and practically 

coincide in many zones. Obviously, the CTC-0D model is much penalized by its linear temperature 

distribution assumption (Eq. (8)), which entails analytical vanishing of the 3q  thermal flow contribution to 

the 3D balance; however, the overall effect of such a flow along the thickness is considered in the 2D 

balance through the contributions (0)Q  and (1)Q in Eqs.(4b,c) and Table 2 [31]. As regards balance aspects 

along the whole thickness (not reported), the STC-0D model is globally more balanced, while the CTC-0D 

model exhibits the highest imbalance.   

Again, graphs along x and y directions are omitted, since they do not show any shape error of the 

temperature distribution; this is because the source energy acting inside the plate has been given the same 

dome-shape as the 2D temperature variables (compare Eqs. (18) and (7)). In the case of other spatial 

distributions of thermal loads inside the plate, differences would arise. 

Finally, we consider a plate that differs from the previous one only for a smaller thickness, equal to

0.01 mh = (results not shown). If maintaining the same source energy, the duration of all transient is 

much shorter, as expected, and temperature curves of TTC-0D and STC-0D practically coincide both in 

the central point and along the thickness. Of course, the temperature curve of CTC-0D is closer to those of 

the other two models than in the thick plate. 

Instead, if greater intensities of the source energy are considered (e.g., 
(0) 5 38 10  W/me =   and 

(1) 9 41.15 10  W/me =  , also used in the following section), CTC-0D shows considerable differences 

compared to TTC-0D and STC-0D, despite the very small thickness. As regards temperature profile, 

although attaining practically equal values at the extreme surfaces, the CTC one considerable deviates 

from the others also in the stationary phase, notwithstanding possible expectations about the ability of the 

assumed linear temperature distribution to accurately describe one-dimensional steady-state heat 

conduction (see, e.g., [30] for a beam).  

For this latter case, a comparison of also mechanical aspects of the response will be performed in the 

next section. 
 

 

(a)  (b)  (c) 

 

Figure 15. Temperature profiles, along z (thickness) direction, in the central point ( / 2,  / 2x a y b= = ), at instants 0 st = (a), 

100 st = (b),, and 6000 st = (c),. 0.1 mh = . Colours (on-line): TTC-0D (red), STC-0D  (blue) and CTC-0D (orange) models. 

 

 



5. Effects of thermal modelling on nonlinear mechanical response 

In the previous Section 4, non-stationary and stationary thermal regimes at continuum levels provided in 

post-processing by various zero-dimensional thermomechanical models have been evaluated. 

In the complex and computationally burdensome context of nonlinear dynamics, it is clearly of great 

importance to select the possibly cheapest model still allowing to reliably describe the essential 

characteristics of the specific nonlinear phenomenon under examination. Thus, it is worth discussing how 

much thermal modelling affects the mechanical response in nonlinear dynamics. Below are some hints on 

the matter. 

Both TTC-0D and CTC-0D models have only one mechanical balance equation with membrane-bending 

couplings (Eq.(3a)). Considering a plate in the same thermal boundary conditions of Sect. 4.3 (free heat 

exchange on up/down faces and cold edges), such equation in terms of configuration variables has the same 

structure for the two models, yet with simpler coefficients for CTC-0D ([32] and [33]): 

3

11 12 13 14 15 1 16 0 17 ( ) 0R Ra W a W a W a W a T a T W a f t+ + + + + + =
  

(TTC-0D) (21) 

3

11 12 13 14 15 1 16 0 17 ( ) 0R Rb W b W b W b W b T b T W b f t+ + + + + + =
   

(CTC-0D) (22) 

where ( )W t
 
is the deflection in the centre of the plate, 0RT

 
and 1RT are the thermal variables of the models, 

and ( )f t  is the mechanical excitation source.  

The STC-0D model has mechanical balance equations depending on the expansion order assumed for the 

transverse displacement. If displacement terms of order higher than cubic are neglected (which is a suitable 

assumption for thin plates, where shear deformability does not play a decisive role), the mechanical balance 

of also STC-0D can be reduced to a single equation. Without going into more details because this model 

will not be used in the following, the structure of this single equation reads: 

( )3

11 12 13 14 15 1 16 3 17 5 18 0 19 2 110 4 111 ( ) 0R R R R R Rc W c W c W c W c T c T c T c T c T c T W c f t+ + + + + + + + + + =   

(STC-0D)
 

 (23) 

Reduced temperature variables ( )RiT t  are seen to affect the mechanical equations (21-23) through both 

parametric- and external-like excitation terms. Under the same physical conditions, these terms vary in 

number and intensity by changing the model, and their importance also depends on the values of 

corresponding coefficients (which change with the model, as well). Their nonlinear mechanical effects have 

to be evaluated. As to the drastic option of taking into account only the mean steady values of the thermal 

variables provided by the various models, by neglecting the underlying non-stationary regimes, previous 

works [35] have highlighted the crucial role played by the thermal transient evolution in steadily modifying 

the response of the mechanical system, already when using the simple CTC model. Thus, the whole thermal 

response (both non-stationary and stationary) has to be considered. 

With the numerical values of the last subcase in Sect. 4.3 (thickness 0.01 mh = , source energy 
(0) 5 38 10  W/me =   and (1) 9 41.15 10  W/me =  ), significant deviations of the temperature profiles of CTC-

0D with respect to the practically coinciding ones of TTC-0D and STC-0D were pointed out. Therefore, in 

this case it may be sufficient to consider TTC-0D as a reference model (instead of STC-0D, which is more 

involved also in mechanical terms, see Eq. (23)) for comparing the mechanical behaviour of the simpler 

CTC one. The mentioned thermal deviations are due to the different time histories of the reduced variables 

0RT  and 1RT  for the two models, which are overlapped in Fig.16. 



 
 

To evaluate the effects of these different thermal responses on the mechanical outcomes of Eqs. (21) and 

(22), let us consider the case of movable edges [32, 35] subjected to uniform stretching forces of 

magnitudes x yp p p= =
 
in x and y direction (see Fig. 2), and transversal resonant harmonic forcing

( ) cos( )f t f t=  . The material’s elastic properties are:  

Y1 = 1.72∙1011 N

m2
,   ν12 = 0.25,   Y2 = 6.91∙109 N

m2
,  G12 = 3.45∙109 N

m2
,   δ = 330

N*s

m3
 

To deal with non-dimensional variables, the following transformations are applied: 

 W(t) = W̅(t)h,          TR0(t) =
h

2

a2α1

T̅R0(t),           TR1(t) =
h

a2α1

T̅R1(t),         τ = Ωt. 

The subsequent system of non-dimensional equations for the plate motion reads (the over-bar upon the 

variables has been dropped for convenience): 

3

12 13 14 15 1 16 0 17 cos( ) 0R RW a W a W a W a T a W T a t+ + + + + + =
  

 (24a) 

0 22 0 23 1 24 25 0R RT a T a T a WW a + + + + =

 

(24b) 

1 32 1 33 34 0R RT a T a W a+ + + =  (24c) 

Equations (24) govern the dynamical behaviour of both CTC and TTC, of course with different 

expressions of the nondimensional coefficients aij due to the diverse mechanical and thermal assumptions. 

For the plate under analysis, the relevant numerical values are: 

 

CTC-0D 

a12 = 0.059, a13 = 1 − p, a14 = 0.683, a15 = −0.367, a16 = −0.966, a17 = −f, a22 = 9.11 10−5,  

a23 = −1.451, a24 = 1.01 10−4, a25 = −0.998 e0 , a32 = 7.87 10−4, a33 = 8.87 10−4, a34 = −12 e1  

 

 
Figure 16. Time history of the membrane and bending thermal variables of TTC-0D and CTC-0D models, with material and 

thermal conditions of Sect. 4.3, and values: 0.01 mh = ,
(0) 5 38 10  W/me =   e 

(1) 9 41.15 10  W/me =  . Colours (on-line): 

TTC-0D (red) and CTC-0D (orange) models. 

 



TTC-0D 

a12 = 0.059, a13 = 1 − p, a14 = 0.686, a15 = −0.273, a16 = −0.904, a17 = −f, a22 = 7.81 10−5,  

a23 = −1.239, a24 = 1.01 10−4, a25 = −1.07 e0, a32 = 6.06 10−4, a33 = 1.19 10−3, a34 = −16.2 e1  

where p, f, e0, e1 are nondimensional parameters representing pretension, amplitude of mechanical 

excitation, membrane source energy and bending source energy, respectively. It is worth noting that Eqs. 

(24) are nondimensionalised with respect to the forcing frequency, which is set equal to the natural 

frequency of the plate in order to study the dynamical response in the neighbourhood of the primary 

resonance condition. Indeed, such condition is known to be the most critical one for the system in terms of 

amplification of the mechanical response to the applied (mechanical, but also thermal) excitation, and it is 

thus the most favourable state to capture possible effects due to the applied thermal energies. Of course, the 

two linear natural frequencies (without pretension application) of CTC and TTC models, which are 

dependent on the mechanical assumptions, slightly differ from each other (ωCTC = 287.4 Hz, ωTTC =
286.7 Hz), so that the following analyses compare the nondimensional responses of the two models around 

the relevant primary resonance conditions. As regards mechanical excitations, the plate is forced to be in an 

incipient buckling condition (corresponding to a pretension p = 9860 N/m2) and to undergo a weak 

harmonic excitation (of amplitude f = 203 kN/m) able to trigger periodic responses, without however 

overwhelming the effect of thermal forcing.  

To verify the effect of active thermal excitations e0 and e1 on the mechanical response, attention is 

focused on the system global behaviour, which is known to play a fundamental role in unveiling the full 

dynamics ensuing from the coexistence of fast (mechanical) and slow (thermal) phenomena [35]. 4D basins 

of attraction of the two models are investigated, by looking at relevant 2D cross-sections in the mechanical 

plane for fixed thermal initial conditions. Figure 17a,b shows the comparison of CTC and TTC global 

outcomes when the evolution of thermal variables starts from null values, which represents the most natural 

condition from a physical viewpoint. Both models display an almost identical monostable scenario (gray 

basins), characterized by the 1-period pre-buckling solution represented in terms of time history and phase 

portrait in Fig. 17c,d. However, it is of interest analysing also the response of the relevant uncoupled 

systems, obtained by separately solving the uncoupled (i.e., a24=a33=0) thermal equations (24) and inserting 

the obtained mean steady values of the thermal variables TR0 and TR1 into the mechanical equation. The 

relevant 2D basins of attraction are reported in Fig. 18a,b and display another (blue) basin corresponding to 

a buckled response described in Fig. 18c,d, which becomes the dominant solution for both CTC and TTC 

uncoupled systems, and the magenta basin relevant to a period-2 solution. The results show small 

differences in the basins size of the gray (pre-buckling), blue (buckled) and magenta (period-2) responses of 

the uncoupled systems. More importantly, significant differences are pointed out by comparing outcomes 

from the coupled (Fig. 17) and uncoupled (Fig. 18) models, which highlight the major role played by the 

thermal transient in determining the steady mechanical response of thermomechanical models. In fact, when 

it is neglected, as in the uncoupled cases, the effect of thermal excitations in terms of variation of 

membrane and bending temperatures is entirely and immediately incorporated into the mechanical equation, 

allowing the system to settle onto a buckled configuration at once.  

Conversely, the coupled models naturally account for the temporal evolution of the thermal variables, 

which furnish a slow contribution to the mechanical vibrations by means of the coupling terms. At the same 

time, the mechanical evolution develops much quicker than the thermal one (as highlighted by Fig. 16 vs 

Figs. 17c and 18c), settling onto the stable (pre-buckling) response long before the thermal evolution has  

provided its full contribution.  



The above results highlight the role played by the simultaneous presence of slow and fast dynamics in 

coupled thermomechanical models, which is definitely dominant with respect to that of possibly different 

modelling assumptions of thermal behaviour, and such to make the features of the mechanical response 

provided by also the simplest (CTC) minimal model substantially equivalent to those obtainable with most 

refined (i.e., TTC and higher-order) thermal models. In this respect, it is worth noting that the presented 

results refer to a thin plate, for which the refined temperature function of the TTC-0D model has certainly a 

minor effect compared to what would happen for thick plates. 

However, in this latter case, it would be rather difficult to distinguish differences in the mechanical 

response due to different thermal assumptions from those certainly arising due to different mechanical 

assumptions, which are also present in the TTC model (owed to the shear deformability hypothesis) and 

likely to play the fundamental role. In any case, non-trivial differences can be produced by different thermal 

assumptions in the transient and (mostly) steady thermal regimes of also thin plates, as previously noticed 

(see Fig. 16). Accordingly, it is necessary to refer to at least the TTC-0D model - which is also much more 

flexible in accounting for thermal boundary conditions - for reliably describing both thermal and 

mechanical responses. 

 

(a)  (b)  

(c)  (d)  

Figure 17. Cross-sections of the 4D basins of attraction of the thermomechanical models CTC-0D (a) and TTC-0D (b) in the  

( ,W W ) plane, with 
0 1(0) (0) 0R RT T= = .  Temporal evolutions (c) and phase portraits (d) of the gray basin 1-period solution. 

Red solution: TTC response, Orange solution: CTC response. 

 



(a)  (b)  

(c)  (d)  

Figure 18. Basins of attraction of the uncoupled thermomechanical models CTC-0D (a) and TTC-0D (b) in the ( ,W W ) plane.  

Temporal evolutions (c) and phase portraits (d) of the blue basin 1-period solution. Red solution: TTC response, blue solution: 

CTC response. 

 

5. Conclusions 

Minimal thermal modelling of two-way thermomechanically coupled plates has been addressed in the 

background of a unified and consistent formulation of the underlying continuum problem. Upon presenting 

variably refined reduced-order thermal models, some main features of the response to active thermal 

sources of isotropic or orthotropic plates with different materials have been investigated in both transient 

and steady regime. Moving from the results provided by the reduced-order models, attention has been 

focused on the reconstruction of 3D temperature configurations and energy balances, controllably pursued 

in the framework of the accomplished 3D → 0D dimension reduction of the thermomechanical problem, by 

also comparing outcomes with those of analytical solutions available from the literature. For the richer 

models allowing to account for the presence of a meaningful variety of thermal boundary conditions, in 

addition to body thermal excitations, different combinations of boundary/body sources have been 

considered in order to get a reasonably reliable evaluation of the relevant advantages and limitations.  

From the whole set of obtained results, a Third-order Thermomechanically Coupled (TTC) minimal 

model – consistently complementing the third-order assumption of transverse displacement suitable to deal 



with also shear-deformable 2D composites with a correspondingly assumed cubic temperature distribution 

along the thickness – has shown to be overall reliable as regards the thermal response. Indeed, in 

comparison with both a richer reduced model characterized by an assumed seventh-order temperature 

distribution (STC) and analytical solutions, where available, it succeeds in providing not only the same 

steady temperature in the plate centre and correspondingly similar distributions along transverse direction 

and mid-plane symmetry axes, but also a reasonable description of the transient dynamics which only 

exhibits a non-realistic temperature overestimation in the first instants of the time evolution. With respect to 

the more refined STC model, TTC has the advantages of being the minimal reduced model (only two 

thermal ODEs, instead of six) which still allows to consider a wide variety of boundary and body thermal 

excitations of technical interest, with a capability to comprehensively describe thermal regimes. 

This appears of particular interest also in view of pursuing in the cheapest possible way from the thermal 

viewpoint a systematic, yet computationally demanding, investigation of the nonlinear dynamic response of 

the actually coupled thermomechanical plate to a combination of mechanical and thermal excitations. In 

this respect, while referring all the way to the minimal modelling also from the mechanical viewpoint (one 

ODE in the sole transverse displacement, suitable to address cases of no internal resonance), it is of course 

necessary to get indications about the influence of the degree of refinement of thermal modelling on the 

mechanical outcomes of the thermomechanically coupled response.  

This has been accomplished in the final part of the paper by considering a thermal excitation condition of 

a mechanically buckled plate, in addition to harmonic transverse mechanical excitation, which can be 

studied via an even simpler reduced model (Classical Thermomechanically Coupled, CTC) exhibiting the 

same minimal number of three ODEs, however suitable to deal only with thin 2D composites. Mechanical 

outcomes of TTC and CTC have been compared with each other via a global dynamics analysis allowing to 

highlight the influence of the slow thermal transient on the steady outcomes of the faster mechanical 

response, which was previously shown to be the most meaningful effect of full thermomechanical coupling 

on the mechanical response, already detectable by the simpler CTC model. Using TTC instead of CTC has 

been seen to provide only quantitative, and relatively minor, differences on the mechanical outcomes while, 

of course, the thermal outcomes are substantially different in the two cases in both transient and steady 

regimes, as highlighted in the main body of the paper.  

So, if being mainly interested in the mechanical aspects of the dynamics, even the simpler minimal CTC 

model could be reliably used, in principle. However, and irrespective of being possibly uninterested in the 

associated thermal outcomes (which would sound anyway questionable in itself), this only holds for the 

quite particular condition of free heat exchange through the boundary surface, to be solely addressed if 

using the CTC model. Thus, investigating the two-way coupled thermomechanical response under more 

general combinations of active thermal excitations, in addition to mechanical ones, requires using the 

minimal TTC model, with a reasonable confidence as regards the overall reliability of the ensuing results. 

This is indeed the subject of a companion paper [42].   
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A. Non-stationary conduction analytical solution 

In the case of non-stationary conduction, the differential heat equation for an isotropic solid in the 

absence of source energy and with all the 6 external faces at constant temperature is analytically satisfied 

by the following temperature field in convergent series form [40]: 

( ) ( )

( )

*

1 1 1 1 2 3

2 2 2 2 2 2 *

1 2 3 0

( , , , ) cos / 2 cos / 2 cos

                     exp[ F ]

n m k
n m k

n m k

n m k

T x y z t T A A A x a y b z
R R R
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∞ ∞ ∞
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= + + ; 

0 2

1
 

v

F t
R c

λ
ρ

= (Fourier number) with λ  thermal conductivity, ρ  mass density, vc  

specific heat at constant strain, t  time; 
*

T  temperature on the external faces. 

B. Stationary conduction analytical solution 

In the case of stationary conduction, the differential heat equation for an orthotropic solid in the absence 

of source energy is analytically satisfied by the following temperature field [39]: 

( )1 1 2 1
( , , ) sinh( ) cosh( ) sin( ) sin( )T x y z C s z C s z x yα β= +

                                                                 
(B.1)

where: /m aα π=  and /m bβ π= , with m and n number of waves, a and b dimension of the rectangular 

plate; 
2 2

11 22
1,2

33

s
λ α λ β

λ
+= ±  with ijλ  thermal conductivities; 1C  and 2C  constants that depend on the 

boundary conditions. 
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C. Coefficients of Eqs.(10), (13), and (18) 

Coefficients of Eqs.(12a,b): 
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Coefficients of Eqs.(15a,b): 
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Coefficients of Eqs.(20a,b): 
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D. Governing equations of the STC-0D model 

Case 1 (Sect.4.1): 

* (0)

21 0 22 0 23 2 24 2 25 4 26 4 27 29

(1)

31 1 32 1 33 3 34 3 35 5 36 5 38

* (2)

41 0 42 0 43 2 44 2 45 4 46 4 47 49

51 1 52 1

2 ( ) 0

( ) 0

2 ( ) 0

R R R R R R

R R R R R R

R R R R R R

R R

a T a T a T a T a T a T a T a e t

a T a T a T a T a T a T a e t

a T a T a T a T a T a T a T a e t

a T a T

+ + + + + + + =

+ + + + + + =

+ + + + + + + =

+ +

& & &

& & &

& & &

& (3)

53 3 54 3 55 5 56 5 58

* (4)

61 0 62 0 63 2 64 2 65 4 66 4 67 69

(5)

71 1 72 1 73 3 74 3 75 5 76 5 78

( ) 0

2 ( ) 0

( ) 0

R R R R

R R R R R R

R R R R R R

a T a T a T a T a e t

a T a T a T a T a T a T a T a e t

a T a T a T a T a T a T a e t

+ + + + =

+ + + + + + + =

+ + + + + + =

& &

& & &

& & &

  (D.1) 

Case 2 (Sect.4.2): 

21 0 22 0 23 1 24 1 25 2 26 2 27 3 28 3 29 4 210 4

* * (0)

211 5 212 5 213 214 216

31 0 32 0 33 1 34 1 35 2 36 2 37 3 38 3 39 4 310 4

311

( ) 0

R R R R R R R R R R

R R

R R R R R R R R R R

a T a T a T a T a T a T a T a T a T a T

a T a T a q a T a e t

a T a T a T a T a T a T a T a T a T a T

a

+ + + + + + + + +

+ + + + + =

+ + + + + + + + +

+

& & & & &

&

& & & & &

* * (1)

5 312 5 313 314 316

41 0 42 0 43 1 44 1 45 2 46 2 47 3 48 3 49 4 410 4

* * (2)

411 5 412 5 413 414 416

51 0 52 0 53 1 54 1 55 2 5

( ) 0

( ) 0

R R

R R R R R R R R R R

R R

R R R R R

T a T a q a T a e t

a T a T a T a T a T a T a T a T a T a T

a T a T a q a T a e t

a T a T a T a T a T a

+ + + + =

+ + + + + + + + +

+ + + + + =

+ + + + +

&

& & & & &

&

& & &
6 2 57 3 58 3 59 4 510 4

* * (3)

511 5 512 5 513 514 516

61 0 62 0 63 1 64 1 65 2 66 2 67 3 68 3 69 4 610 4

* * (4)
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( ) 0

( ) 0

R R R R R

R R

R R R R R R R R R R

R R
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a T a T a q a T a e t

a T a T a T a T a T a T a T a T a T a T

a T a T a q a T a e t

+ + + +

+ + + + + =

+ + + + + + + + +

+ + + + + =

& &

&

& & & & &

&

71 0 72 0 73 1 74 1 75 2 76 2 77 3 78 3 79 4 710 4

* * (5)
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R R R R R R R R R R
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Case 3 (Sect.4.3): 

(0)

21 0 22 0 23 2 24 2 25 4 26 4 27 29

(1)

31 1 32 1 33 3 34 3 35 5 36 5 38

(2)

41 0 42 0 43 2 44 2 45 4 46 4 47 49

51 1 52 1 5

( ) 0

( ) 0

( ) 0

R R R R R R

R R R R R R

R R R R R R

R R

a T a T a T a T a T a T a T a e t

a T a T a T a T a T a T a e t

a T a T a T a T a T a T a T a e t

a T a T a

∞

∞

+ + + + + + + =

+ + + + + + =

+ + + + + + + =

+ +

& & &

& & &

& & &

& (3)

3 3 54 3 55 5 56 5 58

(4)

61 0 62 0 63 2 64 2 65 4 66 4 67 69

(5)

71 1 72 1 53 73 74 3 75 5 76 5 78

( ) 0

( ) 0

( ) 0

R R R R

R R R R R R

R R R R R

T a T a T a T a e t

a T a T a T a T a T a T a T a e t

a T a T a T a T a T a T a e t

∞

+ + + + =

+ + + + + + + =

+ + + + + + =

& &

& & &

& & &

 (D3) 

E. Case 1 (Sect.4.1): exact closed form non-stationary solution of Eq. (2a) in terms of temperature 

By expressing Eq.(4a) in terms of temperature for this case, eliminating source and thermomechanical 

contributions, we have [32]:  

( )
2 2

*0 0 0 33
11 22 02 2

82
0

3
v

T T T
h c T T

x y t h

λλ λ ρ
 ∂ ∂ ∂+ − + − = ∂ ∂ ∂ 

     (E.1) 

This equation is satisfied by the following solution: 

( )* *

0 0( , , ) ( ) sin sin
R

x y
T x y t T T t T

a b

π π= + − ,            (E.2) 

which coincides with the dome-shape temperature distribution (7a) assumed in the 2D → 0D reduction, 

with  

2 3311 22
2 2 2

12

*

0 0( ) v

a b h
t

c

R
T t c e T

λλ λπ

ρ

  + +  
  −

= +  
           (E.3) 

where constant 0c , particularized for 0(0) 0RT = , is 
*

0c T= − . Eq.(E.3) is also solution of Eq.(12a) without 

source terms. 

F. Case 2 (Sect.4.2): exact closed  form non-stationary solution of Eqs. (2) in terms of temperature 

By expressing Eqs.(4) in terms of configuration for this case, eliminating source and thermomechanical 

contributions, we have [32]:  

2 2 * *

0 0 0 0
11 22 33 12 2

33

64 4 6
2 0

5 5
v

T T T TT q
h c T

x y t h h
λ λ ρ λ

λ
  ∂ ∂ ∂+ − + − − − =  ∂ ∂ ∂   

 2 2 * *
3 01 1 1

11 22 33 12 2

33

44 2 4
3 0

75 5
v

TT T T T q
h c h T

x y t h h
λ λ ρ λ

λ
  ∂ ∂ ∂+ − + + − − =  ∂ ∂ ∂   

 

       (F.1) 
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This equations system is satisfied by the following solution: 

0 0( , , ) ( )sin sin
R

x y
T x y t T t

a b

π π= ,               1 1( , , ) ( )sin sin
R

x y
T x y t T t

a b

π π=  
(F.2)

with 

( )

( )((

( )( )
( )

( )(

( )

2 2
3311 22

2 2 2

33

2

2 2
3311 22

2 2 2

57 20494 4

2049

4 2

0 0 1

57 20494 4

2
4 5 4 * 2 2

0 1 11 22

3 2 2 2 2 2 *

11 22

2049 12 33 2049 8

1
33 2049 8 2

24 2049

3 5

v v

v

t
a b h t

c h c

R

t
a b h

c

T e c hc e

c hc e h q b a

h b a a b q

λπ λ π λ

λ
ρ ρ

λπ λ π λ

ρ π λ λ

π λ λ

 +
 − − − −
 
 

 +
 + +
 
 

= − + + +

+ − + +


− + − ( )( ) (

( )) )) ( ( ( )
( )

2 * 2 2 2 2 2 2 *

11 22 33

2
2 * 2 2 2 4 4 * 3 4 4 2 2 2 2 2 2

11 22 33 33 33 11 22

2 2 4 4 2

11 22 33 33

4 90 20

3600 / 2 57

150

h T b a a b h a b q

h T b a a b T h b a a b h

b a a b

π λ λ λ

π λ λ λ λ λ π λ λ π

λ λ λ λ

+ + + −

+ + + + +

+ +

 

(F.3)( )

( )(((

( ) ) (
( )

( )(

( )

2 2
3311 22

2 2 2

33

2

2 2
3311 22

2 2 2

57 20494 4

2049

4 2

1 1 0

57 20494 4

2
4 4 4 * 2 2

1 0 11 22

2 2 2 2

11 22

1
4 33 2049 120

8 2049

1
33 2049 120 2049 3

2

v v

v

t
a b h t

c h c

R

t
a b h

c

T e hc c e

c c e h q b a
h

h b a

λπ λ π λ

λ
ρ ρ

λπ λ π λ

ρ π λ λ

π λ λ

 +
 − − − −
 
 

 +
 + +
 
 

= + + +

 − + + + − + 
 

− + − ( )( ) (

( )) )) ( ( ( )

( ) ))

2 2 * 2 * 2 2 2 2 2 2 *

11 22 33

2
2 * 2 2 2 4 4 2 2 2 2 2 2

11 22 33 33 11 22

2 2 4 4 2

11 22 33 33

41 6 48 25

11 / 2 57

150

a b q h T b a a b a b q

h T b a h b a a b h

b a a b

π λ λ λ

π λ λ λ λ π λ λ π

λ λ λ λ

+ + +

+ + + +

+ +

 

 

 

 

 

 

 

 

 



Supplementary material from “Minimal thermal modelling of two-way thermomechanically coupled plates  for 

nonlinear dynamics investigation” – E. Saetta, V. Settimi, G. Rega 

 

6

where constants 0c  
and 1c , particularized for 0(0) 0RT =  and 1(0) 0RT = , assume the expressions: 

( ) ( )( )(
( ) ( )( ))
( ) ( )( )( )

2
* 5 4 2 2 2 2 3 2 2 2 4 4 2

0 11 22 11 22 33 33

2
* 4 4 2 2 2 2 2 2 2 2 2 4 4 3

11 22 33 11 22 33 33

2
4 4 2 2 2 2 2 2 2 2 4 4 2

33 11 22 11 22 33 33

2 15 1800

      12 90 3600 /

        24 2 57 150

c q h b a a b h b a a b h

T h b a a b h b a a b

h b a a b h b a a b

π λ λ π λ λ λ λ

π λ λ λ π λ λ λ λ

λ π λ λ π λ λ λ λ

= − + + + −

+ − + + + +

+ + + +

    

 

( ) ( )( )(
( ) ( )( ))

( ) ( )( )( )

2
* 4 4 2 2 2 2 2 2 2 2 4 4 2

1 11 22 11 22 33 33

2
* 3 4 2 2 2 2 2 2 2 2

11 22 33 11 22 33

2
4 4 2 2 2 2 2 2 2 2 4 4 2

33 11 22 11 22 33 33

3 82 1200

      12 528 /

        8 2 57 150

c q h b a a b h b a a b h

T h b a a b h b a

h b a a b h b a a b

π λ λ π λ λ λ λ

π λ λ λ π λ λ λ

λ π λ λ π λ λ λ λ

= + − + −

+ + − +

+ + + +

            

(F.4)

Eqs.(F.4) are also solutions of Eq.(15a,b) without source terms. 

G. Case 3 (Sect.4.3): exact closed form non-stationary solution of Eqs. (2) in terms of temperature 

By expressing Eqs.(4) in terms of configuration for this case, eliminating thermomechanical contributions, 

we have [32]:  

( ) ( ) ( )

( )

2 2
2 2 20 0 0

11 11 33 22 22 33 332 2

(0)

33 0 33

2 12 2 12 2 12

24 3( 4 ) 0

v v

T T T
h H h h H h h H c h c

x y t

H T hH E

λ λ λ λ λ λ ρ ρ λ

λ λ

∂ ∂ ∂+ + + − +
∂ ∂ ∂

− + + =
 

( ) ( ) ( )

( )

2 2
4 3 4 3 4 31 1 1

11 11 33 11 11 33 11 11 332 2

2 2 (1)

33 33 1 33

12 12 12

60 120 30( 6 ) 0

v v

T T T
h H h h H h h H c h c

x y t

h H h T hH E

λ λ λ λ λ λ λ ρ λ λ ρ

λ λ λ

∂ ∂ ∂+ + + − +
∂ ∂ ∂

− + + + =

 

     

(G.1) 

This equations are satisfied by the following solutions: 

0 0( , , ) ( )sin sin
R

x y
T x y t T t

a b

π π= ,               1 1( , , ) ( )sin sin
R

x y
T x y t T t

a b

π π=  
(G.2)

with 

( )

2 3311 22
2 2 2

33

12

6 2 2 (0)

33
0 0 2 2 2 2 2

11 33 33 22 33

3 ( 4 )
( )

2 ( 6 ) 2 12 ( 6 )

v

H

a b h H h
t

c

R

a b hH E
T t c e

b h hH a b H h hH

λλ λπ
λ

ρ λ
π λ λ λ π λ λ

  + +   +  − += +
+ + + +
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( ) ( )

( )
( ) ( )

2 2 2 2 2 2 2 2
11 22 33 33 33

2 2 2
33

( 12 ) 60 ( 2 )

( 12 )

1 1

2 2 (1)

33

3 2 2 2 2 2

11 22 33 33 33

( )

30 6
            

( 12 ) 60 ( 2 )

v

b h a h hH a b hH
t

a b h c hH

R
T t c e

a b hH E

h b a hH a h b hH

π λ π λ λ λ λ

ρ λ

λ
π λ λ λ λ λ

+ + + +
−

+= +

+
+ + + +

 

 

 

 

 

(G.3)

where constants 0c  
and 1c , particularized for 0(0) 0RT =  and 1(0) 0RT = , assume the expressions: 

( )
( ) ( )( )( )

2 2 (0)

33

0 2 2 2 2 2

11 33 33 22 33

3  4 

2  6 12    6 

a b h H E
c

b h h H a b H h h H

λ
π λ λ λ π λ λ

+
=

+ + + +
 

( )
( ) ( ) ( )( )( )

2 2 (1)

33

1 2 2 2 2 2 2 2

11 33 33 33 22 33

30  6 

 12 60  2  12

a b h H E
c

h b h h H a b h H h h H

λ
π λ λ λ λ π λ λ

+
=

+ + + + +  

  (G.4)

Eqs.(G.4) are also solutions of Eq.(20a,b). 
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