In this corrigendum we correct an error in our paper [T. Caraballo, R. Colucci, J. López-de-la-Cruz and A. Rapaport. A way to model stochastic perturbations in population dynamics models with bounded realizations, Commun Nonlinear Sci Numer Simulat, 77(2019) 239–257]. We present a correct way to model real noisy perturbations by considering a slightly different stochastic process based, as in the original paper, on the Ornstein-Uhlenbeck process. Namely, we correct the formulae that generates the noisy realizations to ensure the boundedness property to be satisfied with probability one (which turns out not to be true in our original paper even though it was observed in all the simulations).
Corrigendum to the paper: A way to model stochastic perturbations in population dynamics models with bounded realizations. Commun Nonlinear Sci Numer Simulat, 77 (2019), 239–257 / Caraballo, T.; Colucci, R.; Lopez-de-la-Cruz, J.; Rapaport, A.. - In: COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION. - ISSN 1007-5704. - STAMPA. - 96:(2021). [10.1016/j.cnsns.2020.105681]
Corrigendum to the paper: A way to model stochastic perturbations in population dynamics models with bounded realizations. Commun Nonlinear Sci Numer Simulat, 77 (2019), 239–257
Colucci R.;
2021-01-01
Abstract
In this corrigendum we correct an error in our paper [T. Caraballo, R. Colucci, J. López-de-la-Cruz and A. Rapaport. A way to model stochastic perturbations in population dynamics models with bounded realizations, Commun Nonlinear Sci Numer Simulat, 77(2019) 239–257]. We present a correct way to model real noisy perturbations by considering a slightly different stochastic process based, as in the original paper, on the Ornstein-Uhlenbeck process. Namely, we correct the formulae that generates the noisy realizations to ensure the boundedness property to be satisfied with probability one (which turns out not to be true in our original paper even though it was observed in all the simulations).File | Dimensione | Formato | |
---|---|---|---|
Corrigendum.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
296.23 kB
Formato
Adobe PDF
|
296.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Corrigendum.pdf
Open Access dal 24/12/2022
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Creative commons
Dimensione
319.02 kB
Formato
Adobe PDF
|
319.02 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.