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C/ Tarfia s/n, Facultad de Matemáticas, Universidad de Sevilla
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Abstract. In this corrigendum we correct an error in our paper [T. Caraballo,
R. Colucci, J. López-de-la-Cruz and A. Rapaport. A way to model stochas-
tic perturbations in population dynamics models with bounded realizations,
Commun Nonlinear Sci Numer Simulat, 77 (2019) 239–257]. We present a
correct way to model real noisy perturbations by considering a slightly different
stochastic process based, as in the original paper, on the Ornstein-Uhlenbeck
process. Namely, we correct the formulae that generates the noisy realizations
to ensure the boundedness property to be satisfied with probability one (which
turns out not to be true in our original paper even though it was observed in
all the simulations). Once this modification is done, every result and every
example in the initial work remain valid, in fact, the same goal is achieved.

1. Introduction

In our paper [3] we presented a new way to model real noisy perturbations by
making use of the well-known Orstein-Uhlenbeck (OU) process. In addition, we
illustrated this idea with different examples coming from population dynamics and
several numerical simulations.

Let us describe firstly the explanations given in [3] in order to let the reader
understand the error in [3] and the changes needed to preserve the spirit and the

2010 Mathematics Subject Classification. Primary 92D25, 34F05, Secondary 34C60.
Key words and phrases. random perturbation, population dynamics, logistic model, prey-

predator model, observer.
∗Corresponding author: jlopez78@us.es

We thank the anonymous referees of another work, who pointed out a problem when we applied
a result from [1], helping us to find the solution.

1



2

goal of our original work.

It is well known that most real phenomena are subject to suffer the effects of
some kind of noise. Even though there are many works in the literature leading
with stochastic models, they mainly focus on making use of the standard Wiener
process, in spite of the fact that it is unbounded with probability one. This last
property is completely unrealistic from the point of view of applications, since ran-
dom perturbations in real life are bounded. In order to understand better the
drawback caused by the standard Wiener process when modeling noise, we refer
the readers to [4, 5, 6], where the authors investigate chemostat models by means
of the Brownian motion.

Motivated by this fact, we presented in [3] a way to model bounded real pertur-
bations involving the OU process, which has proved to fit in a very loyal way the
random disturbances observed in real life.

More precisely, we explained that we could consider perturbations of some pa-
rameter in a random system of the following kind

(1) ẋ = f(x, z∗β,γ(θtω)),

where z∗β,γ(θtω) denotes the OU process. This type of systems arises when replac-
ing, for instance, some deterministic parameter, namely a, by a+αz∗β,γ(θtω), where
α > 0 denotes the intensity of the noise.

In order to deal with system (1), we introduced in [3] the OU process which is
defined by the random variable

(2) z∗β,γ(θtω) = −βγ
0∫

−∞

eβsθtω(s)ds, t ∈ R, ω ∈ Ω, β, γ > 0,

and solves the Langevin equation

(3) dz + βzdt = γdω,

and then we provided some properties, as the ones in Proposition 2 in [3] that we
recall below.

Proposition 1.1. There exists a θt-invariant set Ω̃ ∈ F of Ω of full P−measure
such that for ω ∈ Ω̃ and β, γ > 0, we have

(i) the random variable |z∗β,γ(ω)| is tempered.

(ii) the mapping

(t, ω)→ z∗β,γ(θtω) = −βγ
0∫

−∞

eβsω(t+ s)ds+ ω(t)

is a stationary solution of (2) with continuous trajectories;
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(iii) for any ω ∈ Ω̃ one has

lim
t→±∞

|z∗β,γ(θtω)|
t

= 0;

lim
t→±∞

1
t

∫ t

0
z∗β,γ(θsω)ds = 0;

lim
t→±∞

1
t

∫ t

0
|z∗β,γ(θsω)|ds = E[z∗β,γ ] <∞;

(iv) finally, for any ω ∈ Ω̃,

lim
β→∞

z∗β,γ(θtω) = 0, for all t ∈ R.

Hence, the idea was the following: (1) we are given an interval, namely [a1, a2],
(2) we fix any event ω ∈ Ω̃ and (3) for every fixed ω ∈ Ω̃, thanks to Proposition
1.1 (iv), which can be found in [1], Lemma 4.1, we can choose β large enough such
that a+ αz∗β,γ(θtω) ∈ [a1, a2] for all t ∈ R.

Then, Proposition 1.1 (iv) was the key of our paper since it allowed us to ensure
that the OU process z∗β,γ(θtω) was bounded in some desired interval (typically fixed
by practitioners) for every fixed event ω ∈ Ω̃ and β large enough.

As we explained in [3], since β could depend on ω, the resulting random system
does not generate a random dynamical system (RDS) and then the theory of RDSs
and pullback attractors could not be applied. But this was not a problem at all,
since the random system could be analyzed for every fixed event ω. In fact, this
allowed us to prove every result of the paper forwards in time, which is a more
natural way than the pullback one.

Nevertheless, we noticed that property (iv) in Proposition 1.1 (Proposition 2 (iv)
in [3]) is not true. By having a deeper look at the proof of the result in [1] we real-
ized that such a result cannot be proved uniformly in time (as we first understood
in [1]), but for every fixed t.

After this, we found a slightly different way to model bounded noises which al-
lows us to prove every result and present every example in the original paper [3] in
a very similar manner. Let us present now the new correct idea.

Assume that we want to consider some random perturbations in a certain pa-
rameter a of a deterministic differential system. In addition, as in real life, those
disturbances must be bounded (for all the time) in some interval around a, namely
[a− d, a+ d], where d > 0.

Instead of replacing a by a + αz∗β,γ(θtω), as we did in [3], we replace a by
a+Φ(z∗(θtω)), where Φ(z) = 2d

π arctan(z) and z∗(θtω) denotes the OU process (2).
In this case, β and γ are fixed through the whole work. Hence, instead of having
to deal with system (1), the resulting random system is of the kind

(4) ẋ = f(x,Φ(z∗(θtω))),

and it will be investigated for every fixed event ω ∈ Ω, as in the original work [3].

We notice that, in this case, as β and γ are fixed, the resulting random system
(4) generates a RDS and then the theory of RDSs and pullback attractors could
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be applied (which was not the case in the original paper). Nevertheless, instead
of using that theory and pullback attraction, we study the random system (4) for
every fixed ω ∈ Ω since it allows us to prove every result forwards in time (which
is, as explained before, more natural than the pullback one).

It is easy to check that the random perturbations a + Φ(z∗(θtω)) are bounded
for every t ∈ R and any ω ∈ Ω, since Φ is bounded. In fact, for every ω ∈ Ω, we
have

a− d ≤ a+ Φ(z∗(θtω)) ≤ a+ d, for all t ∈ R.
In addition, we can prove the following property.

Proposition 1.2. Let Φ(z) = 2d
π arctan(z). Then

(5) lim
t→+∞

1
t

∫ t

0
Φ(z∗(θsω))ds = 0, a.s. in Ω.

Proof. Since Φ(z) = 2d
π arctan(z), then we have∫

Ω

∣∣∣∣2dπ arctan(z∗(ω))
∣∣∣∣ dP(ω) ≤ d|Ω| = d

whence Φ(z∗(·)) ∈ L1(Ω,F ,P). Then, since P is invariant by θ (see [2, 7]), from
the Birkhoff ergodic theorem we deduce that

lim
t→+∞

1
t

∫ t

0
Φ(z∗(θsω))ds = E[Φ(z∗(ω))], a.s. in Ω.

Hence, it is enough to show that E[Φ(z∗(ω))] = 0. In fact, we have

E[Φ(z∗(ω))] =
∫
R

Φ(x)fOU(x)dx = 0,

where fOU denotes the density function of the random variable z∗(·), which is an
even function since it is Gaussian, and Φ is an odd function. �

Hence, the stochastic process Φ(z∗(ω)) satisfies the desired ergodic property
(which was false in Proposition 1.1 (iv)) and it is bounded. Then, every result
in our original work [3] is true when considering this little modification and every
example there can be given to illustrate this new way to model bounded random
perturbations.

Concerning the numerical simulations, they can be done again by considering
the new function Φ(z) = 2d

π arctan(z) and they are analogous to the ones in the
original work [3].

To finish, we would like to remark that we could also use any odd measurable
function Φ such that

lim
z→+∞

Φ(z) = d < +∞.
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