In this work we address an orthogonal non-oriented two-dimensional bin packing problem where items are associated with due-dates. Two objectives are considered: minimize (i) the number of bins and (ii) the maximum lateness of the items. We discuss basic properties of non-dominated solutions and propose a sequential value correction heuristic that outperforms two benchmark algorithms specifically designed for this problem. We also extend the benchmark dataset for this problem with new and larger industrial instances obtained from a major manufacturer of cutting machines. Finally, we give some insights into the structure of Pareto-optimal sets in the classes of instances here considered.
Number of bins and maximum lateness minimization in two-dimensional bin packing / Arbib, C.; Marinelli, F.; Pizzuti, A.. - In: EUROPEAN JOURNAL OF OPERATIONAL RESEARCH. - ISSN 0377-2217. - STAMPA. - 291:1(2021), pp. 101-113. [10.1016/j.ejor.2020.09.023]
Number of bins and maximum lateness minimization in two-dimensional bin packing
Marinelli F.
;Pizzuti A.
2021-01-01
Abstract
In this work we address an orthogonal non-oriented two-dimensional bin packing problem where items are associated with due-dates. Two objectives are considered: minimize (i) the number of bins and (ii) the maximum lateness of the items. We discuss basic properties of non-dominated solutions and propose a sequential value correction heuristic that outperforms two benchmark algorithms specifically designed for this problem. We also extend the benchmark dataset for this problem with new and larger industrial instances obtained from a major manufacturer of cutting machines. Finally, we give some insights into the structure of Pareto-optimal sets in the classes of instances here considered.File | Dimensione | Formato | |
---|---|---|---|
Number_of_bins_and_maximum_lateness_minimization_in_two_dimensional_bin_packing.pdf
Open Access dal 29/09/2022
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Creative commons
Dimensione
569.49 kB
Formato
Adobe PDF
|
569.49 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0377221720308274-main.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.