
26 August 2024

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

Number of bins and maximum lateness minimization in two-dimensional bin packing / Arbib, C.; Marinelli,
F.; Pizzuti, A.. - In: EUROPEAN JOURNAL OF OPERATIONAL RESEARCH. - ISSN 0377-2217. - STAMPA. -
291:1(2021), pp. 101-113. [10.1016/j.ejor.2020.09.023]

Original

Number of bins and maximum lateness minimization in two-dimensional bin packing

Publisher:

Published
DOI:10.1016/j.ejor.2020.09.023

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/289928 since: 2024-05-09T07:20:15Z

This is the peer reviewd version of the followng article:

note finali coverpage

Number of bins and maximum lateness minimization
in two-dimensional bin packing

Claudio Arbib1

Università degli Studi dell’Aquila
Dipartimento di Ingegneria/Scienze dell’Informazione e Matematica

and
Centre of Excellence DEWS

via Vetoio, I-67010 L’Aquila, Italy

Fabrizio Marinelli2, Andrea Pizzuti3

Università Politecnica delle Marche
Dipartimento di Ingegneria dell’Informazione

via Brecce Bianche, I-60131 Ancona, Italy

Abstract

In this work we address an orthogonal non-oriented two-dimensional bin

packing problem where items are associated with due-dates. Two objectives

are considered: minimize (i) the number of bins and (ii) the maximum late-

ness of the items. We discuss basic properties of non-dominated solutions

and propose a sequential value correction heuristic that outperforms two

benchmark algorithms specifically designed for this problem. We also ex-

tend the benchmark dataset for this problem with new and larger industrial

instances obtained from a major manufacturer of cutting machines. Finally,

we give some insights into the structure of Pareto-optimal sets in the classes

of instances here considered.

Keywords: Bin packing, Scheduling, Heuristics, Multi-objective Problems.

(Work supported by the Italian Ministry of Education and Research, National
Research Program PRIN 2015, contract n. 20153TXRX9)

1. Introduction

The r-dimensional Bin Packing (rBP) is a well-known combinatorial

1claudio.arbib@univaq.it
2fabrizio.marinelli@staff.univpm.it
3a.pizzuti@pm.univpm.it

Preprint submitted to European Journal of Operational Research May 9, 2024

optimization problem [18] that calls for packing a given set I of m r-

dimensional items into a minimum number of identical r-dimensional bins.

An instance of the two-dimensional basic version (2BP) consists of m rect-

angular items described by positive integer widths w1, . . . , wm and heights

h1, . . . , hm and (a sufficient number of) rectangular bins of size W ×H, with

W ≥ wi and H ≥ hi, i = 1, . . . ,m. In general, a packing is feasible if items

are completely contained in the bins and do not overlap each other, but a

number of further placement rules and restrictions have been investigated

in the last years (see e.g. [27] for a comprehensive survey). In this work

we deal with the orthogonal 2BP, where item edges must be parallel to bin

edges. Both the oriented and the non-oriented versions are considered: in

the latter case, 90◦ item rotation is allowed. Following a common use, we

will denote these problems as 2OBP, 2RBP, where O, R stand for oriented

and rotation, respectively.

A 2BP solution that is optimal with respect to the efficiency of bin

allocation, may not be so attractive when its quality depends also on the way

items are allocated over time: in many application, the bins of a 2BP solution

are in fact packed in some sequence, and since filling each individual bin

requires a certain amount of time, this sequence will complete the packing

of each item (making it available, e.g., for delivery) in some specific time:

if item i is due by time di, one can then be interested in optimizing a due-

date related objective function, such as weighted tardiness, number of tardy

jobs, maximum lateness, etc. This idea refers BP to a special case of what is

commonly known as Single Batch-processing Machine Scheduling

problem: jobs (items) are done in batches on a machine, a batch (bin) has a

limited capacity and one wants to minimize some function of job completion

times. An application of the above scheduling problem can be found in

semiconductor manufacturing, where burn-in operations on silicon plates

containing batches of chips must be scheduled, see e.g. [26].

The mainstream applications of 2BP are truck loading and warehousing

in logistics, and cutting optimization in manufacturing. In these areas,

the interest for scheduling derives from multiple aspects, first of all the

fulfillment of order delivery dates, for which the optimization of operation

schedule can be worth of consideration. Other applications of 2OBP can

be found in telecommunications: in [16] the authors model the downlink

subframe allocation problem in Mobile WiMAX technology as a 2OBP where

2

items are group of data packets and bins represent time/frequency slots. A

related packing-scheduling problem is addressed in [11], referred to QoS in a

UMTS system with data packets obeying to deadlines or minimizing delays.

Due to the illustrated significance, scheduling issues in packing problems

are receiving increasing attention. For instance: [2] investigates the mini-

mization of a convex combination of number of bins and maximum lateness;

[3] and [23] propose Integer Linear Programming formulations to minimize

the number of bins and the weighted tardiness in one-dimensional cutting

stock. For a comprehensive view of the state-of-the-art, we refer to exhaus-

tive literature reviews reported in [6, 21].

In this paper we consider a bi-criteria 2BP with due dates: we refer to

this problem as 2BP-DD in general, and as 2OBP-DD, 2RBP-DD when ori-

entation is significant. The paper develops earlier ideas formulated in [19]:

problems are described in Section 2 with a discussion of some meaningful

properties; a Sequential Value Correction heuristic (SVC-DD) for the prob-

lems addressed is proposed in Section 4; an improved dual bound for the

scheduling objective function is provided in Section 5; finally, in Section 6,

non-dominated solutions computed by the SVC-DD heuristic are analysed

and compared to those obtained by the algorithms proposed in [6] and [21].

2. Problem and basic properties

In 2BP-DD, we assume as in [6] that

Assumption 1. The bin processing time τ ∈ Z+, i.e., the time required to
fill any bin with the assigned items, is known, constant and independent on
both the items packed and the shape of the packing pattern.

Assumption 2. The completion time of any item i contained in the k-th
bin of the sequence is Ci = kτ .

Rephrasing the above assumptions, bins are completed and delivered at

a constant rate with intervals not smaller than the actual time required

by the packing operations (Assumption 1), and all the items of a bin are

simultaneously released as soon as the bin is completed (Assumption 2).

Our objective calls for the minimization of both the number N of bins

used to pack all items, and the maximum lateness Lmax of an item. By

Assumption 2, the number of bins used is proportional to 1
τ and to the

largest completion time Cmax = maxi∈I{Ci} of the items in I. The lateness

3

Lmax is defined in the literature as the largest violation of a due date, and

can be a negative number. For our purposes, however, we regard negative

Lmax as equivalent to Lmax = 0, and so define Lmax = maxi∈I{Li, 0}, where

Li = Ci − di is the lateness of item i, and di is its due-date.

Once sequenced, a feasible packing has a value defined by a pair π =

(n, `) with N = n and Lmax = `. This packing is said to be (strictly)

non-dominated if for any feasible packing of value (n̄, ¯̀) one either has n <

n̄ or ` < ¯̀ (or both). Moreover, a pair (n, `) is said to be weakly non-

dominated if there is no feasible pair (n̄, ¯̀) such that n̄ < n and ¯̀< `. For

example, take π1 = (20, 5), π2 = (18, 6), π3 = (18, 5), π4 = (21, 6): in this

set π1, π2, π3 are all weakly non-dominated, π3 is strictly non-dominated

and weakly dominates π1, π2 and finally π4 is strictly dominated by π1, π3

and weakly dominated by π2. The general problem (viz., regardless of item

orientation) can then be formalized in this way:

Problem 1. Given a set I of m items of size wi ≤W,hi ≤ H, each due by
a specific date di, i ∈ I, find all the item allocations to bins whose values
(N,Lmax) are strictly non-dominated.

Let us now focus on some properties of non-dominated solutions of Prob-

lem 1: specifically, on the dependence of Lmax on the filling time τ (§2.1),

and on upper bounds that can be obtained exploiting the relation between

N and Lmax (§2.2).

2.1. Dependence on τ

Non-dominated solutions of 2BP-DD depend on τ in a non-trivial way.

Suppose to draw the Pareto region for given due-dates di and variable τ .

As a general observation, the smaller the τ , the smaller the minimum Lmax,

while the minimum N does not depend on τ and is therefore unchanged.

But, contrary to intuition, the relative positions of Pareto-optima are not

necessarily preserved as τ decreases. In fact, let I be a 2BP-DD instance

with bin processing time τ > 1 and due dates di, i ∈ I. Let then x1 and x2

be two solutions of I with N = n bins and minimum Lmax of

`1 = kτ − dp < hτ − dq = `2

for some k, h, p and q: that is, p and q are the critical items determining

the minimum Lmax in the respective solutions, p (q) is processed in the k-

th (in the h-th) bin, and x1 weakly dominates x2. Suppose that p and q

4

3	

1	

2	

5	

4	

2	

3	

4	

1	

5	

d1	=	d2	 d3	 d4	 d5	

d1	=	d2	 d3	 d4	

τ	=	3	

τ	=	1	

x1	

x2	

critical	item	with	both	values	of	τcritical	item	for	τ	=	3	

Figure 1: How the Pareto region changes with τ , ceteris paribus.

still determine the minimum Lmax in x1 and x2 when bin processing time is

altered to τ ′ = ατ . It is easily seen that x2 now weakly dominates x1 for α

such that

(α− 1)τ(h− k) < `1 − `2 (1)

More explicitly (see Figure 1), take an instance with m = 5 items of

size (w1, h1) = (9, 6), (w2, h2) = (5, 2), (w3, h3) = (8, 8), (w4, h4) = (7, 3),

(w5, h5) = (6, 6) and due-dates d1 = d2 = 1, d3 = 2, d4 = 3 and d5 = 4.

Suppose τ = 3 and W = H = 10. Consider two solutions x1 and x2, both

fitting in N = 3 bins and sequenced in this way: x1 has items 1 and 4 packed

in the first bin, items 2 and 3 in the second, and item 5 in the third; in x2,

instead, the first bin is filled with items 1 and 2, item 3 is packed in the

second, and the remaining items in the third. Then, x1 weakly dominates x2

since `1 = 2τ − d2 = 5 and `2 = 3τ − d4 = 6. However x2 weakly dominates

x1 for 0 < α ≤ 2
3 : e.g., for α = 1

3 , the minimum Lmax become `1 = 1 and

`2 = 0.

Due-date scaling by τ is however an easier matter. In fact, an instance

I with τ > 1 is clearly equivalent to I ′ with τ ′ = 1 and fractional due-dates

5

di/τ . When due-dates are restricted to be integers, the above transformation

is of course not allowed but, as we will immediately show, the dependence

on τ can be controlled and turns out to be not excessive. Construct in fact

a scaled instance I ′ with due dates

d′i = di − (di mod τ)

rounded down to the closest multiple of τ . Take two non-dominated solutions

x of I and x′ of I ′ with n bins and minimum Lmax of values `, `′, respectively.

Then

Proposition 1. `′ < `+ τ .

Proof. Let Ci, Li and C ′i, L
′
i be the completion time and the lateness of item

i in solutions x, x′. Therefore

Ci − d′i = Li + (di mod τ)

is the lateness of item i ∈ I in solution x re-computed according to the

scaled due dates. Because x′ is Lmax-optimal in the scaled problem,

`′ = max
i
{C ′i − d′i} ≤ max

i
{Ci − d′i} ≤ max

i
{Li + (di mod τ)} ≤

≤ `+ max
i
{(di mod τ)} < `+ τ

2

Proposition 1 can easily be extended to 1 < τ ′ < τ , obtaining in general

`′ < `+ τ
τ ′ . It basically states that the increase of Lmax is strictly limited to

the time required to pack a single bin. Moreover, it is easy to see that the

frontier of the strictly non-dominated solutions of I can be obtained by the

set of all the weakly non-dominated solutions of I ′.

2.2. Upper bounds to N

Clearly, minimizing N does not correspond to minimizing Lmax: Exam-

ple 2.3 in [2] shows that a solution with a minimum number N∗ of bins and

Lmax = N∗ − 1 can be converted into one with N∗ + 1 bins and Lmax = 0.

However, a strong correlation between the two objectives exists due to As-

sumption 2. Indeed, given a solution of value (n, `), let

I` = {i ∈ I : Li < `}

6

denote the set of items delayed less than `. For any i ∈ I`, define

∆i(`) =

⌊
`− Li
τ

⌋
that is, τ∆i(`) is the largest delay of item i that does not affect the lateness

bound `: in symbols, Li + τ ·∆i(`) ≤ ` ∀i ∈ I`. Let Ci, an integer multiple

of τ , denote the completion time of i ∈ I in a solution of value (n, `). As

already observed in [21],

Proposition 2. For any solution of 2BP-DD with lateness Lmax = `,

N ≤ max
i∈I`
{Ci/τ + ∆i(`)}

Proof. By the above definition, in any solution with lateness `, item i is

delayed at most τ∆i(`). So its completion time cannot be more than Ci +

τ∆i(`), and therefore the number N of bins of any such solution is no larger

than indicated. 2

Solutions of the single-objective 2BP can be exploited to obtain bounds

to non-dominated solutions of 2BP-DD. Let items be sorted by early due

date first (EDD), that is, d1 ≤ . . . ≤ dn, and let (nEDD, ¯̀) be the value of a

2BP-DD solution computed by a Next Fit algorithm regardless of lateness

optimization. Then:

Proposition 3. Any non-dominated solution has N ≤ nEDD bins.

Proof. Let J = {i ∈ I : Ci
τ + ∆i(¯̀) ≥ nEDD + 1}. Due to the Next Fit rule,

if the item in J with the smallest due-date is packed in the k-th bin, then

bins from k + 1 to nEDD contain only items of J . The statement is trivial

for J = ∅. Suppose J 6= ∅. If there exists a permutation of the items in the

first k bins with Lmax < ¯̀, then an additional bin is useless. Otherwise, let

h ∈ I be an item defining ¯̀ (namely, Lh = ¯̀). A better solution can only be

achieved by exchanging h with another item i packed in one of the previous

bins of the current solution. However, di ≤ dh holds for all these items and

the exchange would imply Lmax ≥ ¯̀. 2

In other words, Proposition 3 says that N and Lmax trade off only for

N up to a given threshold, beyond which Lmax increases with N .

7

3. Approximating non-dominated solutions

In multicriteria optimization, several methods were defined to exactly

identify the set of non-dominated solutions. Generally speaking, such meth-

ods can be distinguished in scalarization-based (e.g., weighted combination,

ε-constraint, Tchebycheff metric) and non-scalarizing (e.g., lexicographic,

max-ordering), see [25]. Whatever method is adopted, providing a com-

plete description of the Pareto set is computationally challenging, and an

approximated description of the Pareto set via (meta)heuristics is often an

acceptable compromise [13]. Nevertheless, any approximation raises the

question of how to evaluate the quality of the frontier found, and which

approximation measures are the most adequate. In the literature, several

measures were proposed [28], but just few of them consider worst case anal-

ysis.

To the best of our knowledge, there are two main approaches to measure

worst case approximation of algorithms for p-criteria problems: one [12],

discussed in §3.1, is suitable for heuristics that produce a single solution

to be compared to the whole Pareto frontier, the other [20] is used for

algorithms that produce a set of solutions that do not dominate each other.

In particular, according to [20], an algorithm H is ε-approximated if, for

every non-dominated solution x∗, there exists a solution xH such that

fj(xH) ≤ (1 + ε)fj(x
∗)

holds for each criterion j. However, this kind of approximation cannot

be adopted in our case (and in general when the optimal value of one of

the criteria can be zero) because the ratio Lmax(xH)/Lmax(x∗) is not well

defined.

If instead we consider the absolute error EA(H) = Lmax(xH)−Lmax(x∗),

we observe as expected that most ε-approximate algorithms H2BP for 2BP

can perform arbitrarily bad, i.e., the bound EA(H2BP) ≤ τ(1 + ε)N(x∗)− τ
is tight. One exception is the Next Fit algorithm, where items are sorted by

EDD, which is 3-approximate for 2BP. Indeed:

Proposition 4. With the Next Fit heuristic, the absolute error of Lmax is
bounded by 3τN(x∗)− τ

Proof. see [22], Corollary 3. 2

8

3.1. Single solution approximation

According to the framework proposed in [12], the performance of an

algorithm H can be measured by relying on two norm-based definitions of

approximation ratio:

R1(xH, x
∗) =

|‖f(xH)‖ − ‖f(x∗)‖|
‖f(x∗)‖

or R2(xH, x
∗) =

‖f(xH)− f(x∗)‖
‖f(x∗)‖

where xH is a solution provided by H, x∗ is a non-dominated solution,

f(x) ∈ Rp denotes the objective function vector and ‖·‖ is a monotone norm.

Note that R1 compares the norms of the vectors, whereas R2 evaluates the

difference of vector components.

We then say that an algorithm H is Ri-approximated with µ ∈ R+ if xH

fulfils

Ri(xH, x
∗) ≤ µ (2)

for all non-dominated solutions x∗. As (2) gives a tighter definition of

approximation for i = 1 than for i = 2, an algorithm H that is R1-

approximated with some µ ∈ R+ is also R2-approximated with the same

µ. Note that this definition covers two types of approximation, one of which

derives from taking a single (heuristic, but even non-dominated) solution to

represent the whole Pareto-frontier.

Of course, the approximation ratio depends in general on the norm used.

In the following we will refer to the general norm ‖.‖q. Observe that for

q = 1, R1-approximation reads in our case

N(xH) + Lmax(xH)−N(x∗)− Lmax(x∗)

N(x∗) + Lmax(x∗)
≤ µ

that corresponds to the µ-approximation in the ordinary sense of the single

objective problem where one wants to minimize N +Lmax. As noticed in [2]

(Proposition 2.1), this problem can be approximated by heuristics for the

traditional 2BP problem. In fact, 2BP can be 1-approximated both in the

oriented [15] and the non-oriented [14] case. Therefore n2BP−N∗
N∗ ≤ 1, where

N∗ is the minimum feasible number of bins and n2BP is the number of bins

used by the approximating algorithm H2BP . For τ = 1 this guarantees an

R1-approximation of Problem 1 with µ = 3 under the ‖.‖1 norm, see [2].

The definition of 1-approximation trivially implies n2BP−(N∗+k)
N∗+k ≤ 1 for

9

any k ∈ N. Now note that one can explore all the possible n-values of the

Pareto-optimal set by varying k, with at most one non-dominated solution

for any given k.

So letH2BP be a 1-approximate algorithm for 2BP returning a solution of

value (n2BP , `2BP), and let (n̄ = N∗+k, ¯̀) be the value of a non-dominated

solution of 2BP-DD, where N∗ denotes the minimum number of bins of

2BP and k ∈ N. For the following two results it is useful to recall that,

for τ ≥ 1, the maximum lateness of any solution can never exceed its total

completion time, i.e., for any 2BP-DD solution of value (n, `) one has ` ≤
τn; moreover, H2BP is 1-approximating, hence n2BP ≤ 2N∗, and therefore

n2BP ≤ 2(N∗ + k) clearly holds for k ≥ 0 and any solution of H2BP .

Proposition 5. H2BP is R1-approximated for 2BP-DD under ‖.‖q with

µ = 2 q
√

1 + τ q − 1

for any τ ≥ 1.

Proof.

Writing (2) for 2BP-DD and i = 1, we obtain

(1− µ) q

√
(N∗ + k)q + ¯̀q ≤ q

√
nq2BP + `q2BP ≤ (1 + µ) q

√
(N∗ + k)q + ¯̀q

by expanding the absolute value and rearranging the norm terms within R1.

The left inequality holds for any µ ≥ 1. As previously recalled, ` ≤ τn

for any 2BP-DD solution: hence `q2BP ≤ τnq2BP . Bounding n2BP via the

1-approximation ratio of H2BP implies, as observed, n2BP ≤ 2(N∗+k): the

right inequality then reduces to

q

√
(1 + τ q)nq2BP ≤

q
√

2q(1 + τ q)(N∗ + k)q ≤ (1 + µ) q

√
(N∗ + k)q + ¯̀q

Without loss of generality, we set ¯̀ = 0 to tighten the right-hand side.

Indeed, any valid approximation result still holds for any ¯̀≥ 0. Then, the

inequality becomes

q
√

2q(1 + τ q)(N∗ + k)q ≤ (1 + µ) q
√

(N∗ + k)q

and the result is easily derived. 2

10

Proposition 6. H2BP is R2-approximated for 2BP-DD under ‖.‖q with

µ = q
√

1 + 2qτ q

for any τ ≥ 1.

Proof. Adapting (2) with i = 2 to our case we obtain

q

√
|n2BP −N∗ − k|q + |`2BP − ¯̀|q ≤ µ q

√
(N∗ + k)q + ¯̀q (3)

Using the 1-approximation ratio of H2BP , we have

−(N∗ + k) ≤ n2BP − (N∗ + k) ≤ (N∗ + k)

which implies

|n2BP − (N∗ + k)|q ≤ (N∗ + k)q

Plugging this inequality into (3) we get

q

√
(N∗ + k)q + |`2BP − ¯̀|q ≤ µ q

√
(N∗ + k)q + ¯̀q

Now two possibilities arise:

1. if `2BP < ¯̀, then clearly (¯̀− `2BP)q ≤ ¯̀q and the inequality holds for

any µ ≥ 1.

2. if `2BP ≥ ¯̀, then we use ¯̀ = 0 to tighten the inequality; then raising

a power of both sides we obtain:

`q2BP ≤ (µq − 1)(N∗ + k)q

Bounding `q2BP as in Proposition 5, we further get

|τn2BP |q ≤ 2τ(N∗ + k)q ≤ (µq2 − 1)(N∗ + k)q

from which the result is straightforward.

2

11

4. A sequential value correction heuristic

In an optimization model with exponentially many variables, solving

a pricing problem is fundamental for generating potentially advantageous

columns. In the 0-1 LP formulation we refer to for the 2BP problem, columns

correspond to optional bin fillings, and the advantage of choosing a partic-

ular filling is measured by summing the shadow prices of the items that fill

the bin. Such prices are the components of an optimal dual solution that

correspond to the items at any iteration of the column generation procedure.

In 2BP, solving the pricing problem amounts to solve a two-dimensional

knapsack problem, by far more complex than the one-dimensional knapsack

used for pricing in 1BP. To save CPU time, one can avoid the LP that is

necessary to resolve in order to get the exact shadow prices, and resort to

a heuristic evaluation of their values, called pseudo-pricing, that we will

soon describe. The idea behind a sequential value correction (SVC) algo-

rithm for BP is then quite simple: given a pseudo-price pi for each item

i ∈ I, bins are packed sequentially, each one with the items — not yet allo-

cated — that maximize the sum of pseudo-prices. After a solution has been

computed, pseudo-prices are conveniently updated and the process iterated

until some halting criterion is fulfilled. In our implementation (here named

SVC-DD and described by the pseudo-code Algorithm 1), the computation

halts when either a convenient number P of solutions has been computed, or

both the number of bins and the maximum lateness of the current solution

Sk close the gaps with the relevant lower bounds nLB and `LB (function

check optimality()).

Originally, SVC algorithms were successfully employed in one-dimensional

bin-packing and cutting stock problems [4], then in strip packing [5] and

recently in 2BP [10]. Our implementation differs from those proposed in

[5, 10], mainly in how bins are filled and pseudo-prices updated. Moreover,

in our case the output is a set of reciprocally non-dominated solutions in

terms of the number N of bins filled and the maximum lateness Lmax.

Besides the efficiency and quality of solutions computed by SVC-DD (see

Section 6) it is worth noting that SVC-DD does not use any parameter except

the two (P and Pinner) for controlling the total number of solutions gener-

ated. Therefore, differently from the algorithms for 2RBP-DD proposed in

[6] and [21], it needs neither a demanding preliminary parameter tuning nor

a sensitive analysis.

12

Let D be the generalized item set that for 2OBP-DD coincides with I,

while for 2RBP-DD also includes the 90◦ rotated items hi×wi for every i ∈ I.

Moreover, let nLB and `LB be lower bounds to N and Lmax, respectively.

Algorithm 1 SVC-DD

Input: D,W,H, nLB, `LB
Output: solutions S1, . . . ,SP

p← init prices(D,W,H)
for k ← 1, . . . , P do // compute P solutions

Sk ← ∅
D̄ ← D
repeat // compute solution Sk

B ← ∅
[S, l(rmin), q(rmin)]← init skyline()
repeat // fill bin B

D̃ ← select items(D̄, l(rmin), q(rmin))
K∗ ← KP Conflict(D̃, l(rmin), q(rmin))
B ← add items(K∗)
[S, l(rmin), q(rmin)]← update skyline(K∗)
D̄ ← remove items(K∗)

until (l(rmin), q(rmin)) 6= (W,H)
Sk ← Sk ∪ {B}

until (D̄ 6= ∅)
if check optimality(Sk, nLB, `LB) then

return
end if
if (i− 1) ≡ 0(mod Pinner) then

δ ← random(0, 1]
end if
p← update prices(Sk,p, nLB, `LB, δ)

end for

4.1. Pseudo-price update

Due to the bi-criteria objective, pseudo-prices reflect both the packing

and scheduling quality of the solutions generated. Assume items sorted

by non decreasing due-dates, i.e., d1 ≤ . . . ≤ dm. Initially, the function

init prices() sets the pseudo-prices to

pi :=
WH

di + 1
+ wihi i ∈ D (4)

13

where the first term promotes urgent items, while the second increases the

price of large items.

After the current solution Sk has been computed, pseudo-prices are updated

in function update prices(). The formulas we use to modify pseudo-prices are

designed to jointly exploit information related to i) the instance (e.g., num-

ber of items, bin area, lower bounds), ii) features of the current solution

(e.g., residual space in bins, completion time of the tardiest item). At each

step, the information is merged so that pseudo-price modifications are ad-

equately limited. First, the value of pi, i ∈ D, is increased by a factor

accounting for the unused space of the current solution Sk:

pi := pi

(
1 + δ · nLB

m

)ω(i)−ω̄
mWH

(5)

where ω(i) is the residual space in the bin where item i is packed, and

ω̄ =
WHnLB−

∑
i∈D wihi

nLB
is a lower bound to the overall relative residual.

Since the residual of a bin generally increases with the bin relative position

in the sequence, the formula promotes late packed items with bad patterns,

thus ensuring a suitable mix of the search space. The quality of each pattern

is esteemed by measuring the deviation of ω(i) from the reference point ω̄,

and suitably normalized. The base perturbation is then more relevant for

instances whose solutions have a large number of bins, where it is profitable

to explore a wide collection of patterns. On the other hand, smaller updates

are done in case of many items, where the evolution of pseudo-prices is kept

under control to progressively explore the search space. The exponent and

the constant term in the base are small fractional numbers that prevent

pseudo-prices from diverging quickly.

Also, the pseudo-price of the tardiest item h (and possibly of its rotated

counterpart) is further increased by a factor proportional to the current

maximum lateness:

ph := ph

{
1 +

(
1 + δ · `LB

τ · nLB

)
·
[

(Ch − `LB)/τ

dh + 1

] }
. (6)

where as usual Ch is the completion time of h in the current solution Sk.
The fractional factor

(
1 + δ · `LB

τ ·nLB

)
> 1 is generally very close to 1,

whereas the term
[

(Ch−`LB)/τ
dh+1

]
linearly grows with the current lateness of

item h. The pseudo-price correction is larger when h has a close due date

14

and is packed in a late bin, and is in general emphasized for instances with

high delay values on a limited number of expected bins. Again, numbers are

so designed as to induce relatively small increments of the current pseudo-

price.

Coefficient δ is randomly selected in (0, 1] to perturb pseudo-price dy-

namics, and is renewed each Pinner main iterations.

Update (5) is omitted if the number n of bins in the current solution

reaches the corresponding lower bound, thus being certified optimal.

4.2. Bin filling

The bin filling procedure here described inserts items of D into the cur-

rent bin B in a bottom-up fashion by iterated solution of one-dimensional

knapsack problems. At the end of each step, the upper borders of the items

inserted form a collection of horizontal segments, the roofs, that altogether

form a bin skyline.

Focusing on a generic step of the procedure, let D̄ ⊆ D be the set of items

not yet allocated, and let S = 〈r1, . . . , r|S|〉 (a bin skyline) be an ordered

list of roofs associated with the bin B being filled, see Figure 2-3. Each

roof rj of the bin skyline S is described by a length l(rj) and a height q(rj)

measured from the bottom of the bin; endpoints of adjacent roofs sharing

the projection on the bin bottom edge are connected by a vertical segment

that we call a wall ; the leftmost (the rightmost) roof has the left (the right)

wall coincident with the bin vertical edges. The bin skyline defines a border

within B above which unpacked items can be placed (see Figure 2-3; we

assume w.l.o.g. that adjacent roofs have distinct heights: consecutive roofs

at the same height are merged into a single one).

At the beginning, i.e., when B is empty, the function init skyline() sets

the bin skyline to a single “ground” roof r1 with q(r1) = 0 and l(r1) = W ;

the bin filling process iteratively places unpacked items on the lowest roof

of the bin skyline. Specifically, let rmin be the roof at minimum height in

the current bin skyline

1. If no item can be placed on top of rmin — viz., hi > H − q(rmin) for

each i ∈ D̄ — the procedure ends.

2. Otherwise (Figure 2) function KP Conflict() defines and solves a 0-

1 one-dimensional knapsack problem (KP), with knapsack capacity

l(rmin) and items in D̃ = {i ∈ D̄|wi ≤ l(rmin) and hi ≤ H − q(rmin)}:

15

H

W

r1

r2

r4

r3= rmin

l(rmin)	 l(r4) l(r2) l(r1)

le
ft
	w
al
l	 right	w

all	

q(r1)

q(r2)

q(r4)

q(r3)

knapsack	capacity	

Figure 2: A bin skyline S consisting of 4 roofs r1, . . . , r4; the length of the roof at minimum
height, that is rmin = r3 , defines the capacity of the relevant knapsack; the items of a
knapsack solution (grey rectangles) are ranked by non increasing heights, starting from
the highest wall of rmin — in this case, the left one.

the items of an optimal solution K∗ ⊆ D̃ of KP are placed on top of

rmin, sorted by non increasing heights and placed in this order starting

from the highest among the delimiting walls.

3. Then (Figure 3) function update skyline() updates the bin skyline by

adding a new roof for each item of K∗ and possibly enlarging one roof

adjacent to rmin of an amount corresponding to the unused knapsack

capacity. The bin skyline update involves a new rmin, and the proce-

dure is iterated going back to step (1).

Items in K∗ (and possibly their rotated counterparts) are removed from

D̄ and the process iterated.

For 2OBP-DD, KP is a standard 0-1 knapsack problem. For 2RBP-DD,

however, it becomes a knapsack problem with compatibility constraints: in

fact, at most one item of D out of wi × hi, hi × wi can be allocated to

the knapsack. In our implementation, we use a standard knapsack solver

and handle conflicting items heuristically: while the solution K∗ contains

16

H

W

r1

r2

r6 = rmin

l(r6) = l(rmin)l(r2)l(r1)

le
ft

 w
a

ll

rig
h

t w
a

ll
q(r1)

q(r2)

q(r6)

r3

r4

r5

l(r3) l(r4) l(r5)

updated
knapsack
capacity

q(r3)

q(r4)

q(r5)

u
n

u
se

d
 s

p
a

ce

Figure 3: Bin skyline of Figure 2 updated by placing the three items of the knapsack
solution: the original roof r3 is replaced by a new r3, plus r4 and r5, with lengths and
heights defined according to the items added; r6 is then enlarged to its left for a length
corresponding to the unused space (dashed area). After update, it turns out rmin = r6.

conflicting items, we remove from D̃ the one with smallest pseudo-price per

surface unit, i.e., a conflicting item i with minimum pi/(wihi); then we solve

KP again. Although potentially demanding in terms of CPU time, such a

simple strategy performs very well since conflicts seldom occur (roughly, in

4% of the problems solved).

5. Dual bounds

The strong correlation determined by Assumption 2 between the mini-

mum number N of bins and the minimum Lmax still holds for dual bounds,

and lower bounds to N can be exploited to build lower bounds to Lmax (see

[6]).

A simple lower bound for 2OBP can easily be derived by considering the

two one-dimensional bin packing problems with bins of sizes W and H and

items of sizes w1, . . . , wm and h1, . . . , hm, respectively. Tighter bounds can

be derived by using dual feasible functions (DFF) as described in [1]:

Definition 1. A discrete function f : [0, C] → [0, C ′] (with C, C ′ ∈ Z) is

17

dual feasible if ∑
x∈S

x ≤ C ⇒
∑
x∈S

f(x) ≤ f(C) = C ′

for any finite discrete set S.

Although such bounds are not valid for 2RBP, which is a problem less

constrained than 2OBP, they can still be exploited provided that the in-

stances of 2RBP are adequately relaxed, as proposed in [8]: given an in-

stance of 2RBP with item set I and square bins, construct an instance of

2OBP with the item set D obtained as described in §4, i.e., by expanding I
with the 90◦ rotated counterpart of each item. Then, for any lower bound

NO
LB to the 2OBP-optimum of D, NR

LB =
⌈
NO

LB
2

⌉
is a lower bound to the

2RBP-optimum of I. The proposed approach can be employed also when

bins of I are rectangular, by transforming them into squares and introducing

an appropriate number of dummy items to avoid over-relaxation. However,

the authors of [8] show that NR
LB dominates known lower bounds of 2RBP

only in the case of square bins.

A lower bound to Lmax proposed in [6] is based on the joint consideration

that (i) the EDD rank σ = 〈1, . . . ,m〉 is optimal for minLmax 1-machine

scheduling, (ii) the minimum time at which the k-th item in σ is scheduled

in a combined packing-scheduling problem is at least τ times the minimum

number of bins necessary to accommodate the first k items in the rank,

Fk = {1, . . . , k}, or anyway no less than a lower bound Nk
LB to this value.

Therefore, a lower bound to Lk is

LkLB = τNk
LB − dk

and the bound to Lmax is computed as

LLB = max
k=1,...,m

{LkLB} (7)

The tighter the Nk
LB, the more LLB becomes effective, and we note here

that LkLB can be further tightened under simple conditions, independently

on the quality of the Nk
LB employed, i.e., even when Nk

LB coincides to the

optimal number of bins. In fact, LLB is obtained by computing all the terms

appearing in (7), as if item k were packed in the Nk
LB-th bin, even when no

feasible solution with Lmax = LkLB can place k in that bin.

18

Table 1: Data for an example of lower bound to Lmax.

item length li height hi due date di
1 1 1 1
2 1 2 1
3 1 3 1
4 1 4 1
5 1 6 4
6 1 7 4
7 1 8 4
8 1 9 4

Consider the following simple example: there are m = 8 items, with sizes

and due dates as in Table 1, to be packed into bins of size L×H = 1× 10

and scheduled in time slots of length τ = 1. Items can be packed using four

bins, thus Nm
LB = 4 and formula (7) returns LLB = 0. No EDD rank can

be packed in four bins, though (see Figure 4): either the completion time

increases by one time unit as in the leftmost schedule; or, as in the rightmost,

compressing the items in less bins has the effect of ‘dragging’ urgent items

towards the end of the schedule, so making an EDD rank impossible. The

shortest EDD schedule and the tightest packing (which does not admit an

EDD schedule) respectively give Lmax = 1 and Lmax = 3, hence Lmax cannot

be less than 1 time unit.

Generalizing the above example, we can improve LLB. Let σ = 〈1, . . . ,m〉
be an EDD rank. Call items h and k compatible if they can share the same

bin and, for h < k, let N̄ i
LB be a lower bound to the tightest packing of

• {1, . . . , i} for 1 ≤ i ≤ h (that is N̄ i
LB = N i

LB)

• {1, . . . , i, k} for h < i < k

Finally, let N i,edd
LB be a lower bound to the tightest packing computed on

the first i items of the EDD rank described by σ, i.e., the item completion

times defined by the packing are compliant with the EDD rank expressed

by σ. Then

Proposition 7. Suppose that, for some k ≤ m, Nk,edd
LB > Nk

LB = Nk−1
LB .

Let h be the closest item that is compatible with k in the EDD rank σ, and

L′ = max

{
τN i

LB − di 1 ≤ i ≤ h
τN̄ i

LB − di h < i < k

}

L′′ = max

{
τN i

LB − di 1 ≤ i < k
τ(N i

LB + 1)− di i = k

}

19

4

5

3

6

2

7

1

8

d1 = … = d4 d5 = … = d8

Lmax = L1 = 3

d1 = … = d4 d5 = … = d8

4

3

2

1

5
6

7
8

Lmax = L8 = 1

Figure 4: Lmax obtained with the tightest packing of an EDD rank (left) and the tightest
packing at all.

Then
L̄kLB = min{L′, L′′} (8)

is a lower bound to Lmax.

Proof. If Nk
LB = Nk−1

LB , then the tightest packing of {1, . . . , k} necessarily

places the k-th element with one compatible with k, say h < k. If no such

item exists, then Nk,EDD
LB > Nk

LB implies that Nk
LB can be lifted by one bin:

Lmax ≥ τ(N i
LB + 1)− di i = k

Otherwise, consider the sequence σ̄ = 〈1, . . . , h − 1, h, k, h + 1, . . . , k − 1〉
which is compliant with this packing. As h and k are paired in the same

bin, they can regarded as a single item due by min{dh, dk} = dh, therefore σ̄

is an EDD rank on k− 1 items. Then, using (7) and recalling the definition

20

of N̄ i
LB we obtain:

Lmax ≥ τN i
LB − di 1 ≤ i ≤ h

Lmax ≥ τN̄ i
LB − di h < i ≤ k − 1

where, to alter item completion times as least as possible, h is the closest

item in σ that is compatible with k. Note that h and k are completed at

the same time and dh ≤ dk: so we do not need to specify a bound for i = k.

In alternative, we can bound Li using σ, with N i
LB as an (optimistic)

completion time of {1, . . . , i} for i < k, and Nk,edd
LB ≥ Nk

LB + 1 for i = k:

Lmax ≥ τN i
LB − di 1 ≤ i < k

Lmax ≥ τ(N i
LB + 1)− di i = k

Choosing the case for which Lmax is reduced most, we finally obtain (8). 2

By Proposition 7 we get an improved lower bound L̄LB which is generally

more effective in presence of large items. At the expense of additional CPU

time, the result can be further reinforced by considering the items with both

sides exceeding half the sides of the bin:

IL = {i ∈ I : min (wi, hi) > max (
W

2
,
H

2
)}

For the 2BP, pairs in IL cannot be packed in the same bin. When com-

puting LiLB, for 1 ≤ i ≤ h the bound on the number of bins N i
LB can be

tightened by assuming items in IL as packed in different bins, thus reducing

the area available to pack the remaining items in such bins. This can be

straightforwardly done by imposing that N i
LB cannot be smaller than the

number of items j ∈ IL such that 1 ≤ j ≤ i. Alternative (and possibly

more effective) techniques can be designed by exploiting dual bounds for

the bin packing problem with variable stock sizes, thus computing N i
LB in

a scenario in which bins have different sizes [9].

As described in [21], a lower bound to Lmax can also be obtained by

relaxing the geometrical constraints of a MILP formulation for the maximum

lateness minimization into DFFs-based inequalities which ensure that the

total area of items inside each bin is dual feasible. Lower bounds obtained

in this way are generally good, see Section 6, but the approach calls for the

21

solution of a MILP which is usually time consuming and poorly scalable.

We close this section by observing that the specific structure of LLB also

allows to infer the cardinality of the Pareto frontier. Let x̄ = (n̄, ¯̀) be a

feasible solution.

Proposition 8. If n̄ = NLB + h and ¯̀≤ max{LLB, τ(n̄ + k) − dn}, with
h ≥ 0 and k ≥ 1, then the set of strictly non-dominated solutions contains
at most h+ k points.

Proof. Let x̃ = (n̄+ k, ˜̀) be a feasible solution. ˜̀≥ τ(NLB + h+ k)− dn by

(7) therefore x̃ is dominated by x̄, and there are at most h+k non-dominated

solution with less than n̄+ k bins. 2

6. Computational results

The SVC-DD algorithm was coded in C++ and compiled with Microsoftr

C/C++ Optimizing Compiler (version 19.11.25447). Parameters P and

Pinner were set to 103 and 102, respectively. The nLB and `LB that ap-

pear in formulas (5), (6) and in function check optimality(), are respectively

set to NR
LB, and to L̄LB (computed employing NR

LB).

Tests were performed on a Intelr Core(TM) i7-7500U 2.90 GHz with

16Gb RAM, and were conducted on two sets IR and IB of instances. All the

tables detailing the instance features and the numerical results are reported

in the Appendix.

The former set derives from 28 industrial orders collected by SCM [24],

an Italian group with a major international reputation in the sector of

cutting machines. The problems considered have up to 360 items with

sizes wi ∈ [30, 2928], hi ∈ [24, 1820] and rectangular large bins with sizes

W ∈ [2200, 5600], H ∈ [1163, 2100]. For each instance in this set, Table

2 in the Appendix reports the number m of items, the sizes W and H of

the bin, the ratio wihi
WH between item and bin areas (size factor: min, max,

and mean value) and the ratio wi
hi

between item widths and heights (shape

factor: min, max, and mean value). Instances show quite heterogeneous

size and shape factor ratios and, neglecting the distinction induced by m,

can be grouped by similarity considering the distances max{wi
hi
} −min{wi

hi
}

and max{wihi
WH } −min{wihi

WH }, with the ratio mean value as reference point.

This range seems reasonable as the minimum ratios are close enough, with

only few exceptions (r11, r16 and r24). Instances r3, r5, r6, r8, r13 and r14

22

share a small variability of both size and shape factors, within respective

interval lengths 0.2 and 10. All those instances have mean wi
hi
≥ 2.2, ex-

cept r5 and r13, where it appears lower (1.51 and 1.41). The subset r2,

r4, r9, r10, r11, r16 and r24 presents shape factors spread in the same small

min-max interval, whereas the min-max distance of size factors moves on

average in a range between 0.2 and 0.5. Instance r10 consists of relatively

tiny items, as testified by a mean size factor of 0.08, while for r11, r16 and

r24 the shape factor wi
hi

has a quite large average, above 3.4. Affinities can

be observed in the subgroup r7, r12, r15, r18, r19 and r20 where, given a size

factor variability analogous to the previous subset (e.g., r2 and r4), the min

and max shape factors define ranges of moderate width (between 10 and 30).

Here the mean size factors of r7 and r12 are quite large (0.24 and 0.13), and

the mean shape factors of r15 and r20 are relatively small (2.33 and 2.56).

Finally, some specific affinity based on min-max ranges can be grasped in

the sets {r22, r23}, {r1, r25}, {r21, r26, r27}. The first set presents a moder-

ate size factor variability, while wi
hi

spreads across a large min-max interval

(> 30); however, r22 and r23 disagree on the average shape factor (3.85 of

r22 vs. 6.04 of r23). The second set is characterized by a size factor in a

wide min-max interval (above 0.5), a shape factor within small boundaries

(below 10) and a good affinity on the average measures. The instances in

the last set share large min-max intervals on both factors, with r26 showing

a lower mean wi
hi

of 4.27 than r21 and r27 having a factor larger than 5.30.

The latter set IB of instances was kindly provided by the Authors of [6],

who added due dates to five hundred benchmark instances reported in [7]

(classes I-VI) and [17] (classes VII-X). Each class I to X includes fifty in-

stances grouped by ten into five subsets: each subset hasm ∈ {20, 40, 60, 80, 100}
items and square bins. For each class, Table 3 in the Appendix reports the

bin size, the assortment of item sizes and, according to [6], the number of

instances with NLB > 1 (column “# inst.”). The other entries in row i give

an indication of the frequency of item sizes of class i: for example, 0.7 in

the last row and column means that 70% of the items were generated with

w, h uniformly chosen in [1, 1
2W] and [1, 1

2H], respectively.

Due-dates for both IR and IB instances were generated by randomly

pick integers in the interval [τ + 1, τβNLB] with β ∈ {0.6, 0.8, 1.0} and the

NLB employed in [6]: hence IR and IB consist of three different due-dates

groups A, B, C, amounting on the whole to eighty-four IR-instances and

23

one thousand five hundred IB-instances.

SVC-DD was specifically designed for 2RBP-DD but, skipping (6) and

omitting the due-date related term in (4), it can also be configured as a

quite well-performing heuristic for 2BP, see also [19]. Interestingly, this al-

gorithm turns out to be competitive against heuristics that were specifically

designed for bin packing. Table 4 in the Appendix shows the behaviour of

SVC-DD when used to solve a traditional bin packing problem: the table

reports, for each instance class, number of optima found (col. “# opt”) and

average running times (col. “CPU”). Also, the table compares the mean

number n̄ of bins in the best solutions found by SVC-DD to that employed

by the heuristic SVC2BPRF proposed in [10], and to the best n̄ achieved

in a range of benchmark algorithms chosen from the literature in [10] for

comparison (see column “best H”). Solutions are obtained in similar running

times (0.90 seconds on average). In two cases (classes II and IV) the im-

provement on SVC2BPRF is strictly positive, in one case (class IV) SVC-DD

even outperforms all the benchmark heuristics.

6.1. Comparison to other approaches

In the first part of our experiments, we compare SVC-DD on data-set IB
to:

• the multicrossover genetic heuristic (MXGA) proposed in [6];

• the hybrid constraint and integer linear programming approach (CPMIP)

described in [21].

Both algorithms above are specifically designed for 2RBP-DD. For a fair

comparison of results, we use the same value of τ (= 100) and solution

analysis as in [6, 21], adopting the performance indicators (primal-dual gaps)

GN = 100
(n−NLB)

NLB

GL = 100
(`− LLB)

LLB
.

where (n, `) is a solution with n bins and maximum lateness `, and NLB and

LLB are the dual bounds used in [6].

In particular, for each instance we take a solution (πn) achieving the

minimum N and one (π`, possibly different from πn) with minimum Lmax,

and then measure their quality by GN and GL.

24

SVC-DD vs. MXGA

Table 5 in the Appendix shows the aggregated results of MXGA and

SVC-DD. Each row (i.e., for each class of instances and due-date groups A,

B, C) reports the gaps GN and GL of πn and π` averaged on the 50 instances

of each class.

Numerical figures show that SVC-DD largely improves the mean gaps in

all instances, with just one exception (GN of class VII, group C): accord-

ingly, the overall gap percentage improvement (GMXGA
• −GSVC-DD

•)/GMXGA
• ,

averaged on all the groups of instances, is GN = 26.7%, GL = 38.1% for so-

lutions πn, and GN = 26.1%, GL = 41.3% for solutions π`. In particular, on

classes II, IV and VI the overall gap percentage improvement achieves the

widest values, with SVC-DD performing at least 75.8% better than MXGA.

According to Table 3 (see the Appendix), SVC-DD generally obtained its

best results in instances with relatively small items. Indeed, SVC-DD reaches

very limited gaps in classes II, IV, VI and IX, with GN ≤ 2% for all groups

and GL ≤ 3% for group A. The gap GL grows up to 6.2% in group B and

further arrives up to 15.2% in group C, with the exception of class VI where

GL = 58.4%. In addition, SVC-DD finds solutions with a minimum number

of bins in all the instances of classes II.

On the other hand, MXGA performs better in some cases: solution πn in

class I for groups A and B, values of GN in classes I, VII and VIII for ex-

ample. Still, the overall gap is less wide, and MXGA is at most 23.5% better

than SVC-DD. Actually, classes VII and VIII correspond to the highest GN

values reached by SVC-DD, which are always above 7.5%, up to 12.3%. In

the same classes, also the GL values are meaningful, growing from 20.6% for

πl in group A to 242.4% for πn in group C. Higher gaps are reached in class

X only, topping 275.6% for πn. Nevertheless, these large GL gaps are not

particularly representative (see Section 6.3) and remain significantly smaller

than those obtained by MXGA.

About CPU time, though requiring the repeated solution of 0-1 knapsack

problems, SVC-DD has a mean running time of 1.46 sec. This value is two

order of magnitude less than the CPU times reported in [6], a speedup that

cannot be just ascribed to hardware configuration.

SVC-DD vs. CPMIP

SVC-DD can be just partially compared to CPMIP, since [21] focuses on

25

Lmax minimization and therefore gives gaps GL but no detail on packing

quality. Thus, we focus on the comparison of GL for solutions π`.

Table 6 in the Appendix reports the percentage gaps GL of the primal

solutions π` computed by MXGA (same as the fifth column of Table 5),

CPMIP and SVC-DD (same as the ninth column of Table 5). The figures show

that SVC-DD provides mean percentage gaps always better than CPMIP

except for class IX, where the gaps of groups A and B coincide. In the

other classes, the percentage gap improvement (GCPMIP
L −GSVC-DD

L)/GCPMIP
L

spreads from 15.8% up to 82.6% in group A, reducing in group B from 7.8%

to 56.6% and in group C from 8.2% to 57.3%. The widest gap improvements

are generally observed in classes II, IV and VI (respectively 57.5%, 61.8%

and 49%, averaged across all the groups), while the smallest are found in

classes I, V (11.1% and 14.3% averaged across all the groups) and III in group

C only (8.2%). Summarizing, the percentage gap improvement averaged on

the classes is of 34.4% on group A, 24.6% on group B and 22.4% on group

C.

As a final remark, SVC-DD was able to certify the optimality of Lmax

in 620 cases out of 1500 vs. 586 cases in which CPMIP does the same —

but with a mean running time of 30.2 seconds, roughly twenty times that of

SVC-DD. The certification phase makes use of the best bound configuration

for each algorithm, i.e. NR
LB and L̄LB for SVC-DD and the tightest lower

and upper bounds for CPMIP discussed in [21].

6.2. Improved dual bounds

The Authors of [21] propose two different lower bounds to Lmax, the

tighter of which computed via a Mixed Integer Linear Program (MILP). In

their experiments, for 256 instances out of 1500 the MILP was not able to

return a valid bound within one hour of CPU time. A valid bound for the

remaining 1244 instances was computed within a mean running time of 74.91

seconds, and in 361 cases it strictly improved (by 31.30% on average) that

reported in [6]. Nonetheless, the bounds proposed in [21] do not dominate

LLB as computed in [6] and therefore do not dominate L̄LB.

In our tests, the improvements (both individual and combined) achieved

via Proposition 7 and by employing the bin packing dual bound NR
LB are

the following. L̄LB (computed without employing NR
LB) resulted tighter

than LLB (7) in 39 instances (2.60% of the cases), with an improvement on

26

this subset that ranges from 0.36% to 223.53%, 22.25% on average. Specif-

ically, the bound was improved in eleven instances of group A (2.20% of

the cases), with an average (minimum, maximum) improvement of 4.36%

(0.36%, 11.41%). In both groups B and C the favorable cases rise to fourteen

(2.80% of the cases), and the improvement magnitude increases as well: in

group B, it ranges between 1.31% and 63.28%, with a mean improvement

of 16.12%; in group C, the minimum improvement was 5.43%, the maxi-

mum 223.53%, and 42.44% on average. Looking at instance classes, eight

cases of improvement were observed across all groups, respectively in class

I and III (mean improvement of 9.92% and 31.02%), fifteen cases in class V

(improvement of 13.14% on the average), two in class VII (7.35% of mean

enhancement) and six in class X (54.75% improvement on the average). Due

to the rationale of Proposition 7, which implicitly relies on item incompati-

bility (see §5), improvements are achieved on instance classes with relatively

large items; in fact, in classes II, IV and VI all items are compatible and the

proposition ineffective (see Table 3 in the Appendix).

On the other hand, in 505 cases the bound in [6] strictly improves (by

28.07% on average) when computed using NR
LB. Via Proposition 7, this

bound is further improved in a small fraction of cases: for 2RBP-DD, 0.67%

of the instances showed an improvement from 0.38% to 35.42%, 11.44% on

average. The mean improvement respectively reaches 1.05%, 16.08% and

9.82% in group A, B and C. Averaged across instance classes, the improve-

ment gets 10.46% in class I, 10.08% in class III, 7.87% in class V, 6.07% in

class VIII and 35.42% in class X. For 2OBP-DD, an improvement is recorded

in 1.26% of the instances, ranging from 0.27% to 14.53%, 4.25% on average.

In Group A the bound was enforced on average by 1.33%, in group B by

3.62% and in group C by 6.42%. Such improvements were achieved on av-

erage across all groups as 7.29% in class I, 3.39% in class III, 3.52% in class

V, 1.71% in class VIII and 8.98% in class X. Again, improvements emerge

more often for instances with relatively large items.

Details on the gaps obtained by using L̄LB (computed by employing NR
LB)

are reported in Table 7. By comparing such gaps with those reported in

Table 5, it emerges that the gaps of solutions πn are lowered by 35.8% (GN)

and 30.3% (GL) in the overall, and the gaps of π` by 30.1% (GN) and 34.3%

(GL). Thanks to the improved bound, SVC-DD is proved to find an ideal

point (a solution that achieves both absolute minima N and Lmax, see also

27

§6.3 below) in all the instances of class IX. In addition, the largest gap re-

duction, averaged on all groups, is observed in classes I, III and V (from

51.4% to 88.4%, 42.9% to 57.0%, 49.6% to 65.3%), whilst no improvement

was achieved on classes II, IV and VI. The overall mean improvement ranges

from 30.1% to 36.3% for group A, from 27.5% to 35.3% for group B and from

29.9% to 35.1% for group C. All the lower and upper boundaries are given

by the improvements of πn on GL and GN , respectively.

Averaged on due-date types, the best gaps GL obtained in [21] exploiting the

best known lower bounds are 11.9% for due-date group A, 20.5% for group

B and 68.5% for group C. For SVC-DD, the best gaps GL are improved to

7.4% in group A, 14.2% in group B and 51.8% in group C.

As a final remark, L̄LB was obtained in 0.63 seconds on average.

6.3. Pareto-analysis

Measuring solution quality by gaps GN and GL has inherent limits,

as 2BP-DD is a multi-objective problem. Moreover, for relatively large

due-dates and τ , GL results very data-sensitive: for example, with τ =

100, LLB = 5 and di = 95, gap GL jumps from 0% (when item i is assigned

to the first bin) to 2000% (when i is allocated one bin later). In order to

assess the performance of SVC-DD we then preferred two measures, that we

derived from papers on multi-objective evaluation: R̄1 and GA. The former

uses the ratio R1(xH, x
∗) proposed by [12], see §3.1; the latter is a slight

modification of the Space Covered Measure (SCM) presented by [28]. In

both cases we resort to the notion of ideal solution value, intended as the

point xid = (nid, `id) ∈ N2 with nid = NLB and `id = LLB.

Let X̄ = {x̄i = (n̄i, ¯̀
i), i = 1, . . . , p} be the set of non-dominated solu-

tions computed through a heuristic for 2BP-DD. Indicator R̄1 is the mini-

mum of R1(x̄i, xid) computed with norm ‖.‖2 among all solution values in

X̄:

R̄1 = min
i∈X̄

R1(x̄i, xid) =
|
√
n̄2
i + ¯̀2

i −
√
N2
LB + L2

LB|√
N2
LB + L2

LB

(9)

While R̄1 is constructed after the differences of solution value norms

from the norm of the ideal point, indicator GA attempts at evaluating the

area that underlies the Pareto-frontier (as approximated by solutions in X̄).

Let xnad = (NUB, LUB) be the nadir point, where NUB and LUB are valid

upper bounds to N and Lmax respectively. A frontier is evaluated by two

28

Figure 5: Aid = light grey area; AX̄ −Aid = dark grey area; x̄ = (n̄i, ¯̀
i), i = 1, . . . , p, are

the solution values in the heuristic frontier X̄.

areas computed as sums of rectangles, see Fig. 5: the first area underlies xid

and is given by Aid = NLB(LUB−LLB)+LLBNUB; the second is associated

with X̄ and amounts to AX̄ =
∑p

i=0
¯̀
i(n̄i+1− n̄i), where solution values are

sorted by increasing N and n̄0 = ¯̀
p+1 = 0, ¯̀

0 = LUB, n̄p+1 = NUB. The

quality of a heuristic frontier X̄ is then measured through the percent gap:

GA = 100
AX̄ −Aid

Aid
(10)

Gap GA increases as the heuristic frontier steps further from xid, and takes

into account both the quality and cardinality of X̄. Note that GA mainly

differs from the SCM of [28] in how areas are computed, but can be employed

to evaluate any bi-objective optimization algorithm. Clearly, both R̄1 and

GA equal zero only when xid is the value of a feasible packing, which implies

that the optimal frontier consists of just one solution of value xid (proving

the existence of such packing is NP-complete).

Since R̄1 is more meaningful when solution values are comparable to

each other, the computational results reported next are obtained by setting

τ = 1 and normalizing due-dates accordingly.

We conducted the above described Pareto-analysis on both instance sets IB
and IR. Table 8 in the Appendix shows the results on IB instances. The

29

table reports R̄1 and GA for each class and due-date group, with GA referred

to the nadir point xnad = (nEDD, τ · nEDD), see Proposition 2. The table

also gives

• how many times (#m) the set X̄ of reciprocally non-dominating solu-

tions found by SVC-DD has more than one point,

• how many times (#s) Proposition 8 certifies that the optimal frontier

consists of a single solution,

• how many instances (#opt) out of #s are solved to optimality by

SVC-DD (i.e., the cases in which there is a feasible ideal point).

By Proposition 8, the Pareto-optimal set consists of very few solutions: in

our tests we found a single non-dominated solution in 1278 out of 1500 cases,

two in 210 cases and three in the remaining 6 cases. In 905 out of 1278 cases

we proved that the Pareto-optimal set consists of a single solution. SVC-

DD found the ideal point, and therefore certified optimality, in 590 cases,

whereas a solution with n̄ = NLB bins was found in the remaining 315 cases.

Let us now describe the algorithm performance on the set IR of real

industrial instances. Table 9 in the Appendix distinguishes results by due-

date groups A, B and C. Columns |X̄| and CPU report the number of

non-dominated solutions in X̄ and the CPU time spent, respectively. Table

10 in the Appendix reports the values of the solutions πn and π` found. Real

instances appear a bit more challenging than artificial ones: the mean values

of R̄1 and GA are respectively 0.11 and 7.38 for group A, 0.09 and 7.36 for

group B, 0.09 and 8.86 for group C: more than twice the values observed for

IB. In addition, the mean CPU time required by group A was 9.35 seconds,

whereas group B and C needed 8.57 and 8.31 seconds respectively: more

than five times that required for IB. In more detail, on some instances we

may find that SVC-DD performs extremely well: very limited GA and R̃

values were achieved not only on instances with small m (e.g. r1, r2 and

r5), but also on those of more substantial size (e.g. r15, r18, r22 and r26),

with gaps GA below 3% and R̃ at most 0.02 for all groups. On the other

hand, the algorithm struggles on other instances. Indeed, on r3 and r14 the

measure GA peaks up to 40.73%, and R̃ touches 0.60; on r4, r10 and r13

(without being exhaustive) the values of GA and R̃ are significant, ranging

between 10% and 25% for the former and moving from 0.14 and 0.22 for

30

the latter. As for IB, the vast majority of the frontiers found by SVC-

DD consists of a single point, but rather than a characteristic of optimal

frontiers, in IR this feature seems to be related to some inability of the

algorithm in diversification. Indeed, we were able to certify a single-point

optimal frontier in just 11 out of 28 cases of group A, and optimality in 4

cases only. The above feature is even more evident in the results of groups B

and C: Proposition 8 proves a singleton optimal frontier (that is, |X̄| = 1) in

ten and seven cases respectively, whereas only in two and one single case the

solution found was certified to be the ideal point. This scenario suggests,

as future work, to try and improve SVC-DD by local search. An intuitive

way to populate X̄ can rely on exploring solutions with increasing N and

decreasing Lmax: starting from a non-dominated packing, the search could

anticipate the critical item for which Lmax = `, while enforcing a controlled

delay on items with strictly positive τ∆i(`), see §2.2.

As a final remark, let us provide a quick insight on the behaviour of

SVC-DD for the fixed-orientation problem 2OBP-DD. In order to compute

a NLB suitable for 2OBP-DD, we make use of the bound LCCM recalled in

[8]. The features of X̄ do not change substantially on IB-instances: SVC-

DD found a single non-dominated solution in 1241 cases, two in 250 cases,

three in 8 cases and four in a single case. In 934 cases of 1241 only a single

non-dominated solution exists in the Pareto-frontier: for 548 instances our

algorithm returned the ideal point, whereas in the other 386 cases the lower

bound on the number of employed bins was reached. On the other hand, the

mean values of R̄1 and GA (referred to the same ideal point as 2RBP-DD)

more than double in all the due-date groups A,B and C, while global mean

CPU time decreases by almost 36% (from 1.46 to 0.94 sec).

On IR-instances, the differences between oriented and non-oriented re-

sults are less evident than in IB. In group A, R̄ and GA are on average 0.11

and 7.96, respectively: very close to the 2RBP-DD case; for both groups

B and C, R̄ reaches on average 0.12, whereas the mean GA increases up to

10.01 (group B) and 11.76 (group C). Concerning the structure of Pareto-

frontiers (respectively for groups A, B and C), a singleton optimal frontier

was proved in 13, 11 and 10 cases and global optimum was found in 5, 4 and

2 instances. The complete set of results for 2OBP-DD is available from the

corresponding author.

31

7. Conclusions

We considered a bi-objective extension of an orthogonal two-dimensional

bin packing problem, where items are associated with due-dates, and we

wish to minimize both the maximum lateness of the items and the number

of bins required to pack them all. We discussed some basic properties of non-

dominated solutions and their dependence by the packing time τ . Moreover,

following the definition of approximation ratios defined for multi-criteria

problem in [12], we showed how approximation algorithms for 2BP provide

approximation results also for 2BP-DD.

To solve the problem in practice, we proposed a sequential value cor-

rection heuristic (SVC-DD) and used a large set of benchmark instances to

compare its performance with MXGA of [6] and CPMIP of [21]. Results

show that SVC-DD largely outperforms both algorithms, achieving in gen-

eral better primal-dual gaps in a much smaller CPU time. We further tested

SVC-DD on a set of new and more challenging instances derived from real-

world orders: our heuristic obtained very good results in many instances

and struggled in very few ones, always providing solutions in very reason-

able computational time. Finally, we analyzed our results under a multi-

objective perspective and gave details about the structure of the heuristic

frontier built by SVC-DD, inferring also some features of the Pareto-optimal

sets.

Acknowledgements

We are grateful to Julia A. Bennell that kindly provided us the instances

used in [6] and to SCM for making available the industrial instances. We

also wish to thank two anonymous Reviewers whose sharp remarks helped

us improve the presentation of our results. This research was supported by

the Italian Ministry of Education, National Research Program (PRIN) 2015,

contract n. 20153TXRX9.

[1] Alves, C., F. Clautiaux, J. Carvalho and J. Rietz, Dual-Feasible Func-

tions for Integer Programming and Combinatorial Optimization: Ba-

sics, Extensions and Applications, Springer International Publishing

(2016); ISBN: 978-3-319-27602-1

32

[2] Arbib, C., and F. Marinelli, Maximum lateness minimization in one-

dimensional bin packing, Omega Int. J. of Management Science (2016);

DOI: 10.1016/j.omega.2016.06.003

[3] Arbib, C., and F. Marinelli, On cutting stock with due dates, Omega

Int. J. of Management Science 46 (2014) 11-20

[4] Belov G., and G. Scheithauer, Setup and open-stack minimization in

one-dimensional stock cutting, INFORMS Journal on Computing 19, 1

(2007) 27-35

[5] Belov, G., G. Scheithauer and E.A. Mukhacheva, One-dimensional

heuristics adapted for two-dimensional rectangular strip packing, J. of

the Operational Research Society 59, 6 (2008) 823-832

[6] Bennell, J.A., L-S. Lee, and C.N. Potts, A genetic algorithm for two-

dimensional bin packing with due dates, Int. J. of Production Economics

145, 2 (2013) 547-560

[7] Berkey, J.O., and P.Y. Wang, Two-dimensional finite bin-packing algo-

rithms, J. of the Operational Research Society 38 (1987) 423-429

[8] Clautiaux, F., A. Jouglet, and J. El Hayek, A new lower bound for

the non-oriented two-dimensional bin-packing problem, Operations Re-

search Letters 35 (2007) 365-373.

[9] Crainic, T. G., G. Perboli, W. Rei and R. Tadei, Efficient lower bounds

and heuristics for the variable cost and size bin packing problem, Com-

puters & Operations Research, 38, 11 (2011) 1474-1482.

[10] Cui, Y. P., Y. Cui and T. Tang, Sequential heuristic for the two-

dimensional bin-packing problem, European Journal of Operational Re-

search, 240, 1 (2015) 43-53

[11] Detti, P., A. Agnetis and G. Ciaschetti, Polynomial algorithms for a

two-class multiprocessor scheduling problem in mobile telecommunica-

tions systems, Journal of Scheduling 8, 3 (2005) 255-273

[12] Ehrgott M., Approximation algorithms for combinatorial multicriteria

optimization problems, International Transactions in Operational Re-

search 7 (2000) 5-31

33

[13] Ehrgott, M., and M.M. Wiecek, Multiobjective Programming. In: Multi-

ple Criteria Decision Analysis: State of the Art Surveys, (2005) 667-708,

Springer, New York

[14] Harren, R., and R. van Stee, Packing Rectangles into 2OPT Bins Using

Rotations. In: Gudmundsson J. (eds) Algorithm Theory – SWAT 2008.

Lecture Notes in Computer Science, vol 5124 (2008), Springer, Berlin,

Heidelberg

[15] Jansen, K., L. Prädel and U.M. Schwarz, Two for One: Tight Approxi-

mation of 2D Bin Packing. In: Dehne F., Gavrilova M., Sack JR., Tóth

C.D. (eds) Algorithms and Data Structures. WADS 2009. Lecture Notes

in Computer Science, vol 5664 (2009), Springer, Berlin, Heidelberg

[16] Lodi, A., S. Martello, M. Monaci, C. Cicconetti, L. Lenzini, E. Min-

gozzi, C. Eklund and J. Moilanen, Efficient two-dimensional packing al-

gorithms for mobile WiMAX, Management Science 57, 12 (2011) 2130-

2144

[17] Lodi, A., S. Martello, and D. Vigo, Heuristic and metaheuristic ap-

proaches for a class of two-dimensional bin packing problems, IN-

FORMS Journal on Computing 11 (1999b) 345-357

[18] Lodi, A., S. Martello, and D. Vigo, Recent advances on two-dimensional

bin packing problems, Discrete Applied Mathematics 123 (2002) 379-

396

[19] Marinelli, F., and A. Pizzuti, A Sequential Value Correction heuris-

tic for a bi-objective two-dimensional bin-packing, Electronic Notes in

Discrete Mathematics 64 (2018) 25-34

[20] Papadimitriou, C.H., and M. Yannakakis, On the approximability of

trade-offs and optimal access of web sources, Proceedings 41st Annual

Symposium on Foundations of Computer Science (2000) 86-92

[21] Polyakovskiy, S., and R. M’Hallah, A hybrid feasibility constraints-

guided search to the two-dimensional bin packing problem with due

dates, European J. of Operational Research 266, 3 (2018) 819-839

[22] Qi, X., A note on worst-case performance of heuristics for maintenance

scheduling problems, Discrete Applied Mathematics 155 (2007) 416-422

34

[23] Reinertsen, H., and T.W.M. Vossen, The one-dimensional cutting stock

problem with due-dates, European J. of Operational Research 201

(2010) 701-711

[24] SCM Group. https://www.scmgroup.com/en US

[25] T’kind, V., and J.C. Billaut, Multicriteria Scheduling Theory, Models

and Algorithms, (2006), Springer, Berlin, Heidelberg

[26] Uzsoy, R., Scheduling a single batch processing machine with non-

identical job sizes, International Journal of Production Research 32

(1994) 1615-1635

[27] Wäscher, G., H. Haußner, and H. Schumann, An improved typology of

cutting and packing problems, European J. of Operational Research 183

(2007) 1109-1130

[28] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., and V.G. da Fon-

seca, Performance assessment of multiobjective optimizers: an analysis

and review, IEEE Transactions on Evolutionary Computation, 7 (2003)

117-132

35

