Using a minimization argument and a quantitative deformation lemma, we establish the existence of least energy sign-changing solutions for the following nonlinear Kirchhoff problem (a+b[u]2)(−Δ)su+V(x)u=K(x)f(u)inR3,where a,b>0 are constants, s∈(0,1), (−Δ)s is the fractional Laplacian, V,K are continuous, positive functions, allowed for vanishing behavior at infinity, and f is a continuous function satisfying suitable growth assumptions. Moreover, when the nonlinearity f is odd, we obtain the existence of infinitely many nontrivial weak solutions not necessarily nodals.

Sign-changing solutions for a fractional Kirchhoff equation / Isernia, T.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 190:(2020). [10.1016/j.na.2019.111623]

Sign-changing solutions for a fractional Kirchhoff equation

Isernia T.
2020-01-01

Abstract

Using a minimization argument and a quantitative deformation lemma, we establish the existence of least energy sign-changing solutions for the following nonlinear Kirchhoff problem (a+b[u]2)(−Δ)su+V(x)u=K(x)f(u)inR3,where a,b>0 are constants, s∈(0,1), (−Δ)s is the fractional Laplacian, V,K are continuous, positive functions, allowed for vanishing behavior at infinity, and f is a continuous function satisfying suitable growth assumptions. Moreover, when the nonlinearity f is odd, we obtain the existence of infinitely many nontrivial weak solutions not necessarily nodals.
2020
File in questo prodotto:
File Dimensione Formato  
Isernia_NA.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 774.47 kB
Formato Adobe PDF
774.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Sign-changing solutions for a fractional Kirchhoff equation.pdf

Open Access dal 14/09/2021

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Creative commons
Dimensione 363.83 kB
Formato Adobe PDF
363.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/289873
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact