Using a minimization argument and a quantitative deformation lemma, we establish the existence of least energy sign-changing solutions for the following nonlinear Kirchhoff problem (a+b[u]2)(−Δ)su+V(x)u=K(x)f(u)inR3,where a,b>0 are constants, s∈(0,1), (−Δ)s is the fractional Laplacian, V,K are continuous, positive functions, allowed for vanishing behavior at infinity, and f is a continuous function satisfying suitable growth assumptions. Moreover, when the nonlinearity f is odd, we obtain the existence of infinitely many nontrivial weak solutions not necessarily nodals.
Sign-changing solutions for a fractional Kirchhoff equation / Isernia, T.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 190:(2020). [10.1016/j.na.2019.111623]
Sign-changing solutions for a fractional Kirchhoff equation
Isernia T.
2020-01-01
Abstract
Using a minimization argument and a quantitative deformation lemma, we establish the existence of least energy sign-changing solutions for the following nonlinear Kirchhoff problem (a+b[u]2)(−Δ)su+V(x)u=K(x)f(u)inR3,where a,b>0 are constants, s∈(0,1), (−Δ)s is the fractional Laplacian, V,K are continuous, positive functions, allowed for vanishing behavior at infinity, and f is a continuous function satisfying suitable growth assumptions. Moreover, when the nonlinearity f is odd, we obtain the existence of infinitely many nontrivial weak solutions not necessarily nodals.File | Dimensione | Formato | |
---|---|---|---|
Isernia_NA.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
774.47 kB
Formato
Adobe PDF
|
774.47 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Sign-changing solutions for a fractional Kirchhoff equation.pdf
Open Access dal 14/09/2021
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Creative commons
Dimensione
363.83 kB
Formato
Adobe PDF
|
363.83 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.