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SIGN-CHANGING SOLUTIONS FOR A FRACTIONAL

KIRCHHOFF EQUATION

TERESA ISERNIA

Abstract. Using a minimization argument and a quantitative deformation lemma, we establish
the existence of least energy sign-changing solutions for the following nonlinear Kirchhoff problem

(a + b[u]2)(−∆)su + V (x)u = K(x)f(u) in R3,

where a, b > 0 are constants, s ∈ (0, 1), (−∆)s is the fractional Laplacian, V,K are continuous,
positive functions, allowed for vanishing behavior at infinity, and f is a continuous function satisfying
suitable growth assumptions. Moreover, when the nonlinearity f is odd, we obtain the existence of
infinitely many nontrivial weak solutions not necessarily nodals.

1. Introduction

In this paper we are interested in the existence of least energy sign-changing (or nodal) solutions
for the following nonlinear Kirchhoff problem{

(a+ b[u]2)(−∆)su+ V (x)u = K(x)f(u) in R3,
u ∈ Ds,2(R3),

(1.1)

where a, b > 0 are constants, s ∈ (0, 1), and (−∆)s is the so-called fractional Laplacian which, up
to a normalizing factor, may be defined for every u ∈ C∞c (R3) as

(−∆)su(x) = 2 lim
r→ 0

∫
R3\Br(x)

u(x)− u(y)

|x− y|3+2s
dy (x ∈ R3).

Here Ds,2(R3) is defined as the completion of u ∈ C∞c (R3) with respect to the Gagliardo semi-norm

[u]2 :=

∫∫
R6

|u(x)− u(y)|2

|x− y|3+2s
dxdy.

Throughout the paper we will assume that the functions V,K : R3 → R are continuous, and we say
that (V,K) ∈ K if the following conditions hold true (see [3]):
(V K0) V (x),K(x) > 0 for all x ∈ R3 and K ∈ L∞(R3);
(V K1) If {An}n∈N ⊂ R3 is a sequence of Borel sets such that the Lebesgue measure m(An) is less

than or equal to R, for all n ∈ N and some R > 0, then

lim
r→+∞

∫
An∩Bcr(0)

K(x) dx = 0,

uniformly in n ∈ N, where Bcr(0) := R3 \ Br(0).
Furthermore, one of the following conditions occurs

(V K2) K/V ∈ L∞(R3)
or
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2 T. ISERNIA

(V K3) there exists ν ∈ (2, 2∗s) such that

K(x)

V (x)
2∗s−ν
2∗s−2

→ 0 as |x| → +∞,

where 2∗s := 6
3−2s is the fractional critical Sobolev exponent.

For what concerns the nonlinearity f , we assume that f ∈ C(R,R) and fulfills the following condi-
tions:

(f1) lim
|t|→0

f(t)

|t|3
= 0 if (V K2) holds, or

(f̃1) lim
|t|→0

f(t)

|t|ν−1
< +∞ if (V K3) holds;

(f2) f has a quasicritical growth at infinity, namely

lim
|t|→+∞

f(t)

|t|2∗s−1
= 0;

(f3) F has a superquadratic growth at infinity, that is

lim
|t|→+∞

F (t)

|t|4
= +∞, where F (t) :=

∫ t

0
f(τ)dτ ;

(f4) the map t 7→ f(t)

|t|3
is strictly increasing for every t ∈ R \ {0}.

When a = 1 and b = 0, and R3 is replaced by the more general space RN , problem (1.1) turns
into the following fractional Schrödinger equation

(−∆)su+ V (x)u = f(x, u) in RN , (1.2)

which has been proposed by Laskin [30, 31] in fractional quantum mechanics as a result of extending
the Feynman integrals from the Brownian like to the Lévy like quantum mechanical paths. We recall
that in these years nonlinear problems involving nonlocal operators have received the attention of
many mathematicians due to their intriguing structure and in view of several applications, there-
fore many papers appeared in the literature studying existence and multiplicity results of positive
solutions for (1.2); see for instance [4, 5, 20, 22, 28] and the references therein.

On the other hand, only few results have been established for sign-changing solutions to (1.2);
see [7, 9, 32, 42]. We point out that one of the main difficulty when we deal with sign-changing
solutions to (1.2) is the nonlocal character of the fractional Laplacian. More precisely, in the
fractional framework, the Gagliardo seminorm decomposes as follows

[u]2 = [u+]2 + [u−]2 − 2

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy,

where u+ = max{u, 0} and u− = min{u, 0}, which is in contrast with the local case, for which it
holds the following decomposition

‖∇u‖22 = ‖∇u+‖22 + ‖∇u−‖22.

Indeed, this decomposition is very useful when we deal with classical nonlinear Schrödinger equations
and Dirichlet boundary value problems because permits to apply some variational and topological
methods to obtain the existence of sign-changing solutions; see [12, 13, 14, 16, 44].

On the other hand, when s = 1, problem (1.1) reduces to the following Kirchhoff equation

−
(
a+ b

∫
R3

|∇u|2 dx
)

∆u+ V (x)u = f(x, u) in R3, (1.3)
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related to the stationary analogue of the Kirchhoff equation [29]

ρ
∂2u

∂t2
−

(
p0
h

+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0,

for all x ∈ (0, L) and t ≥ 0. This equation is an extension of the classical D’Alembert wave equation
taking into account the changes in the length of the strings produced by transverse vibrations. In
(1.3), u(x, t) is the lateral displacement of the vibrating string at the coordinate x and the time t,
L is the length of the string, h is the cross-section area, E is the Young modulus of the material, ρ
is the mass density and p0 is the initial axial tension.

The earliest studies dedicated to (1.3) can be found in [15, 37]. Anyway, only after the pioneering
work by Lions [33], in which the author introduced a functional analysis approach to study a general
Kirchhoff equation in arbitrary dimension with external force term, problem (1.3) began to attract
the attention of many mathematicians; see for instance [1, 2, 23, 27] for positive solutions and
[19, 25, 24, 36] for sign-changing solutions.

Recently, Fiscella and Valdinoci [26] proposed the following stationary Kirchhoff model driven
by the fractional Laplacian −M

(∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)
(−∆)su = λ f(x, u) + |u|2∗s−2u in Ω,

u = 0 in RN \ Ω,
(1.4)

where Ω ⊂ RN is an open bounded set, 2∗s = 2N
N−2s , N > 2s, s ∈ (0, 1), M : R+→R+ is an increasing

continuous function which behaves like M(t) = a+ b t, with b ≥ 0, and f is a continuous function.
Based on a truncation argument and the mountain pass theorem, the authors established the exis-
tence of a non-negative solution to (1.4) for any λ > λ∗ > 0, where λ∗ is an appropriate threshold.
Equation (1.4) models the nonlocal aspect of the tension arising from nonlocal measurements of the
fractional length of the string; see [26] for more physical background involving this subject. After
their work, and due to the increasing interest toward fractional problems, many authors dealt with
existence and multiplicity of solutions for (1.4); see [6, 8, 10, 11, 21, 34, 35, 38, 39].

On the other hand, only few results concerning the existence and multiplicity of sign-changing
solutions for fractional Kirchhoff problems appear in the literature; see [17, 18]. In this case, the
methods used to look for sign-changing solutions for (1.3) does not work due to the presence of
two nonlocal terms, the fractional Laplacian (−∆)s and the fractional Kirchhoff term [u]2(−∆)su,
therefore a more accurate investigation is needed in this framework.

Motivated by the above results, in this paper we study the existence and multiplicity of sign-
changing solutions for (1.1).

Now, we state the main result of this paper.

Theorem 1.1. Suppose that (V,K) ∈ K and f ∈ C(R,R) verifies either (f1) or (f̃1) and (f2) −
(f4). Then, problem (1.1) possesses a least energy sign-changing weak solution. In addition, if
the nonlinear term f is odd, then problem (1.1) has infinitely many nontrivial weak solutions not
necessarily nodals.

The proof of Theorem 1.1 is obtained by applying suitable variational techniques inspired by
[7, 25]. In order to study (1.1), we consider the following functional E : X→R defined by

E(u) =
1

2
‖u‖2 +

b

4
[u]4 −

∫
R3

K(x)F (u) dx,

where

X :=

{
u ∈ Ds,2(R3) :

∫
R3

V (x)|u|2 dx < +∞
}
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endowed with the norm

‖u‖2 := a[u]2 +

∫
R3

V (x)|u|2dx.

Clearly, E ∈ C1(X,R), and its differential is given by

〈E ′(u), ϕ〉 = (a+ b[u]2)

∫∫
R6

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|3+2s
dxdy +

∫
R3

V (x)uϕdx−
∫
R3

K(x)f(u)ϕdx,

for any u, ϕ ∈ X.
We recall that u is a sign-changing solution of (1.1) if u ∈ X is a weak solution to (1.1) and

u± 6= 0. Therefore, we define the nodal set

M := {w ∈ N : w± 6= 0, 〈E ′(w), w+〉 = 〈E ′(w), w−〉 = 0}.

where

N := {u ∈ X \ {0} : 〈E ′(u), u〉 = 0}.

Then, we try to get sign-changing solutions for (1.1) by seeking minimizers of the functional E
over the constraint M. Since (−∆)s is nonlocal, we need some technical analysis to prove that
M 6= ∅ and the minimizer is indeed a sign-changing solution to (1.1). Anyway, several difficulties
arise in the study of our problem. Indeed, as explained above, we have to take care of the presence
of nonlocal terms, so some fine estimates will be done. Furthermore, the nonlinearity f is only
continuous, so we cannot apply C1-Nehari manifold method but we borrow some ideas developed
in [41]. Finally, to produce nodal solutions, instead of using the Miranda Theorem to get critical
points of hu(ξ, λ) = E(ξu+ +λu−), we use an iterative process to build a sequence which converges
to a critical point of hu(ξ, λ).

The paper is organized as follows. In Section 2 we prove some useful results which allow us to
overcome the lack of differentiability of the Nehari manifold in which we look for weak solutions
to problem (1.1). In Section 3 we obtain some technical lemmas regarding the existence of a least
energy nodal solution. In Section 4 we get the existence of sign-changing weak solutions by using
minimization arguments and a variant of the Deformation Lemma.

Notations: We denote by BR(x) the ball of radius R with center x and by BcR(x) = R3 \BR(x). In
the case x = 0, we set BR = BR(0) and BcR = R3 \ BR(0). Let 1 ≤ r ≤ ∞ and A ⊂ R3. We denote
by |u|Lr(A) the Lr(A)-norm of u : R3→R and by |u|r its Lr(R3)-norm.

2. Preliminary results

We begin this section by proving the following results that allow us to overcome the non-
differentiability of N . Below, we denote by S the unit sphere on X.

Lemma 2.1. Suppose that (V,K) ∈ K and f verifies conditions (f1) − (f4). Then, the following
facts hold true:

(a) For each u ∈ X \ {0}, let hu : R+ → R be defined by hu(t) := E(tu). Then, there is a unique
tu > 0 such that h′u(t) > 0 in (0, tu) and h′u(t) < 0 in (tu,+∞);

(b) There is τ > 0, independent of u, such that tu ≥ τ for every u ∈ S. Moreover, for each
compact set W ⊂ S, there is CW > 0 such that tu ≤ CW for every u ∈ W;

(c) The map m̂ : X \ {0} → N given by m̂(u) := tuu is continuous and m := m̂|S is a homeo-
morphism between S and N . Moreover, m−1(u) = u

‖u‖ .
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Proof. (a) Firstly, assume that (V K2) is in force. Then, from (f1), (f2), and the Sobolev embedding
we get

E(tu) = a
t2

2
[u]2 + b

t4

4
[u]4 +

t2

2

∫
R3

V (x)|u|2 dx−
∫
R3

K(x)F (tu) dx

≥ t2

2
‖u‖2 − ε

∫
R3

K(x)t2u2 dx− Cε
∫
R3

K(x)t2
∗
s |u|2∗s dx

≥
(

1

2
− ε |K/V |∞

)
t2‖u‖2 − CεC|K|∞t2

∗
α‖u‖2∗α .

(2.1)

Taking ε ∈ (0, 1
2|K/V |∞ ), we find t0 > 0 sufficiently small such that

0 < hu(t) = E(tu) for all t < t0. (2.2)

Now, assume that (V K3) is true. Then, there is a positive constant Cν such that, for each ε ∈ (0, Cν),
we obtain R > 0 such that for every u ∈ X∫

BcR
K(x)|u|ν dx ≤ ε

∫
BcR

(V (x)|u|2 + |u|2∗s ) dx. (2.3)

Now, combining (f̃1) with (f2), the Sobolev embedding, (2.3) and the Hölder inequality, we can
infer that

E(tu) ≥ t2

2
‖u‖2 − Ctν

∫
R3

K(x)|u|ν dx− C̃t2∗s
∫
R3

K(x)|u|2∗s dx

≥ t2

2
‖u‖2 − Ctνε

∫
BcR

(V (x)|u|2 + |u|2∗s ) dx− Ctν
∫
BR
K(x)|u|ν dx− C̃t2∗s |K|∞

∫
R3

|u|2∗s dx

≥ t2

2
‖u‖2 − Ctνε

∫
BcR

(V (x)|u|2 + |u|2∗s ) dx− Ctν |K|
L

2∗s
2∗s−ν (BR)

(∫
BR
|u|ν dx

) ν
2∗s

− C̃t2∗s |K|∞
∫
R3

|u|2∗s dx

≥ t2

2
‖u‖2 − C1t

ν

(
ε‖u‖2 + εC‖u‖2∗s + C|K|

L
2∗s

2∗s−ν (BR)
‖u‖ν

)
− Ct2∗s |K|∞‖u‖2

∗
s , (2.4)

which implies that (2.2) is verified.
On the other hand, since F (t) ≥ 0 for every t ∈ R, we have

E(tu) ≤ at
2

2
[u]2 + b

t4

4
[u]4 +

t2

2

∫
R3

V (x)|u|2 dx−
∫
A
K(x)F (tu) dx,

where A ⊂ suppu is a measurable set with finite and positive measure. Hence,

lim sup
t→+∞

E(tu)

‖tu‖4
≤ b

4
− lim inf

t→∞

{∫
A
K(x)

[
F (tu)

(tu)4

](
u

‖u‖

)4

dx

}
.

In the light of (f3) and using Fatou’s lemma we can infer that

lim sup
t→+∞

E(tu)

‖tu‖4
≤ −∞. (2.5)

Therefore, there exists R > 0 sufficiently large such that hu(R) = E(Ru) < 0.
Since hu is a continuous function and exploiting (f4), there is tu > 0 which is a global maximum of

hu with tuu ∈ N . Next we prove that tu is the unique critical point of hu. Assume by contradiction



6 T. ISERNIA

that there are t1 > t2 > 0 critical points of hu. Then we have

‖u‖2

t21
+ b[u]4 −

∫
R3

K(x)
f(t1u)

(t1u)3
u4 dx = 0,

‖u‖2

t22
+ b[u]4 −

∫
R3

K(x)
f(t2u)

(t2u)3
u4 dx = 0.

From which, taking into account (f4), we deduce

0 >

(
1

t21
− 1

t22

)
‖u‖2 −

∫
R3

K(x)

[
f(t1u)

(t1u)3
− f(t2u)

(t2u)3

]
u4 dx > 0,

which leads a contradiction.

(b) By (a) there exists tu > 0 such that 〈E ′(tuu), tuu〉 = 0. Arguing as in (2.1) and (2.4), we obtain
that there exists τ > 0, independent of u, such that tu ≥ τ .

On the other hand, let W ⊂ S be a compact set. Assume by contradiction that there exists
{un}n∈N ⊂ W such that tn := tun → ∞. Therefore, there exists u ∈ W such that un → u in X.
From (2.5), we have

E(tnun)→ −∞ in R. (2.6)

We notice that by (f4) it follows that the real function

t 7→ 1

4
f(t)t− F (t)

is strictly increasing for every t > 0 and strictly decreasing for every t < 0. Hence, we have that for
any v ∈ N

E(v) = E(v)− 1

4
〈E ′(v), v〉 =

1

4
‖v‖2 +

∫
R3

K(x)

[
1

4
f(v)v − F (v)

]
dx ≥ 0, (2.7)

Since {tunun}n∈N ⊂ N, we conclude from (2.6) that (2.7) is not true, which is a contradiction.

(c) Let us note that m̂, m and m−1 are well defined. Actually, for each u ∈ X \ {0}, by (a) there
is a unique m(u) ∈ N . On the other hand, if u ∈ N then u 6= 0, so m−1(u) = u

‖u‖ ∈ S and m−1 is

well defined. Moreover, since

m−1(m(u)) = m−1(tuu) =
tuu

‖tuu‖
= u for all u ∈ S

and

m(m−1(u)) = m

(
u

‖u‖

)
= t( u

‖u‖

)( u

‖u‖

)
= u for all u ∈ N ,

we can deduce that m is bijective and m−1 is continuous. Next we verify that m̂ is continuous. Let
{un}n∈N ⊂ X and let u ∈ X \ {0} be such that un→u in X. From (b) there exists t0 > 0 such that
tun‖un‖ = t(un/‖un‖)→ t0. Hence, tun→ t0

‖u‖ . From tunun ∈ N we deduce that

(a+ bt2un [un]2)t2un [un]2 + t2un

∫
R3

V (x)|un|2 dx =

∫
R3

K(x)f(tunun)tunun dx.

Letting n→∞ we have

a
t20
‖u‖2

[u]2 + b
t40
‖u‖4

[u]4 +
t20
‖u‖2

∫
R3

V (x)|u|2 dx =

∫
R3

K(x)f

(
t0
‖u‖

u

)
t0
‖u‖

u dx,

that is t0
‖u‖u ∈ N and tu = t0

‖u‖ , that shows m̂(un)→ m̂(u). Hence, m̂ and m are continuous

functions. �
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Let us define the maps

ψ̂ : X→ R and ψ : S→ R,
by ψ̂(u) := E(m̂(u)) and ψ := ψ̂|S.

The next result is a consequence of Lemma 2.1 (see [41]).

Proposition 2.1. Suppose that (V,K) ∈ K and f fulfills (f1)− (f4). Then, one has the following
assertions:

(a) ψ̂ ∈ C1(X \ {0},R) and

〈ψ̂′(u), v〉 =
‖m̂(u)‖
‖u‖

〈E ′(m̂(u)), v〉 for all u ∈ X \ {0} and v ∈ X,

(b) ψ ∈ C1(S,R) and 〈ψ′(u), v〉 = ‖m(u)‖〈E ′(m(u)), v〉, for every v ∈ TuS, where

TuS :=

{
v ∈ X : 〈v, u〉 = a

∫∫
R6

(v(x)− v(y))(u(x)− u(y))

|x− y|3+2s
dxdy +

∫
R3

V (x)uv dx = 0

}
,

(c) If {un}n∈N is a (PS)d sequence for ψ, then {m(un)}n∈N is a (PS)d sequence for E. Moreover,
if {un}n∈N ⊂ N is a bounded (PS)d sequence for E, then {m−1(un)}n∈N is a (PS)d sequence
for the functional ψ,

(d) u is a critical point of ψ if and only if m(u) is a nontrivial critical point for E. Moreover,
the corresponding critical values coincide and

inf
u∈S

ψ(u) = inf
u∈N
E(u).

Remark 2.1. We notice that the following equalities hold true:

d∞ := inf
u∈N
E(u) = inf

u∈X\{0}
max
t>0
E(tu) = inf

u∈S
max
t>0
E(tu). (2.8)

In particular, relations (2.1), (2.5) and (2.8) imply that

d∞ > 0. (2.9)

3. Technical lemmas

The aim of this section is to prove some technical lemmas related to the existence of a least energy
nodal solution.

For each u ∈ X with u± 6≡ 0, we introduce the function hu : [0,+∞)× [0,+∞)→ R defined as

hu(ξ, λ) := E(ξu+ + λu−).

Let us observe that its gradient Φu : [0,+∞)× [0,+∞)→ R2 is defined by

Φu(ξ, λ) := (Φu
1(ξ, λ),Φu

2(ξ, λ))

=

(
∂hu

∂ξ
(ξ, λ),

∂hu

∂ λ
(ξ, λ)

)
=
(
〈E ′(ξu+ + λu−), u+〉, 〈E ′(ξu+ + λu−), u−〉

)
.

(3.1)

Lemma 3.1. Suppose that (V,K) ∈ K and f fulfills (f1)− (f4). Then, it follows that
(i) The pair (ξ, λ) is a critical point of hu with ξ, λ > 0 if, and only if, ξu+ + λu− ∈M;

(ii) The map hu has a unique critical point (ξ+, λ−), with ξ+ = ξ+(u) > 0 and λ− = λ−(u) > 0,
which is the unique global maximum point of hu;

(iii) The maps a+(r) := Φu
1(r, λ−)r and a−(r) := Φu

2(ξ+, r)r are such that

a+(r) > 0 if r ∈ (0, ξ+) and a+(r) < 0 if r ∈ (ξ+,+∞)

a−(r) > 0 if r ∈ (0, λ−) and a−(r) < 0 if r ∈ (λ−,+∞).
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Proof. (i) For all ξ, λ > 0, from (3.1) it follows that

Φu(ξ, λ) =

(
1

ξ
〈E ′(ξu+ + λu−), ξu+〉, 1

λ
〈E ′(ξu+ + λu−), λ u+〉

)
.

Then, Φu(ξ, λ) = 0 if, and only if,

〈E ′(ξu+ + λu−), ξu+〉 = 0 and 〈E ′(ξu+ + λu−), λ u−〉 = 0,

and this implies that ξu+ + λu− ∈M.

(ii) Firstly we verify the existence of a critical point for hu. For each u ∈ X with u± 6= 0 and λ0
fixed, we define the function h1 : [0,+∞)→ [0,+∞) by

h1(ξ) := hu(ξ, λ0).

Arguing as in the proof of Lemma 2.1-(a), we can infer that there exists a unique ξ0 = ξ0(u, λ0) > 0
such that

h′1(ξ) > 0 if ξ ∈ (0, ξ0)

h′1(ξ0) = 0

h′1(ξ) < 0 if ξ ∈ (ξ0,+∞).

Thus, the map φ1 : [0,+∞) → [0,+∞) defined by φ1(λ) := ξ(u, λ), where ξ(u, λ) satisfies the
properties just mentioned with λ in place of λ0, is well defined.

By the definition of h1 we have

h′1(φ1(λ)) = Φu
1(φ1(λ), λ) = 0 ∀λ ≥ 0, (3.2)

that is

(a+ b[φ1(λ)u+ + λu−]2)

∫∫
R6

((φ1(λ)u+ + λu−)(x)− (φ1(λ)u+ + λu−)(y))φ1(λ)(u+(x)− u+(y))

|x− y|3+2s
dxdy

+

∫
R3

V (x)(φ1(λ)u+)2 dx =

∫
R3

K(x)f(φ1(λ)u+)φ1(λ)u+ dx. (3.3)

Observing that

[φ1(λ)u+ + λu−]2 = φ21(λ)[u+]2 + λ2[u−]2 − 2λφ1(λ)

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy

and ∫∫
R6

((φ1(λ)u+ + λu−)(x)− (φ1(λ)u+ + λu−)(y))φ1(λ)(u+(x)− u+(y))

|x− y|3+2s
dxdy =

= φ21(λ)[u+]2 − 2λφ1(λ)

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy,

equation (3.3) can be rewritten as

a

(
φ21(λ)[u+]2 − 2λφ1(λ)

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy

)
+ b

(
φ21(λ)[u+]2 + λ2[u−]2 − 2λφ1(λ)

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy

)
×

×
(
φ21(λ)[u+]2 − 2λφ1(λ)

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy

)
+

∫
R3

V (x)(φ1(λ)u+)2 dx =

∫
R3

K(x)f(φ1(λ)u+)φ1(λ)u+ dx.

(3.4)

Now, we prove some properties of φ1.
a) The map φ1 is continuous.
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Let λn → λ0 as n → ∞ in R. We want to prove that {φ1(λn)}n∈N is bounded. Assume by
contradiction that there is a subsequence, again denoted by {λn}n∈N, such that φ1(λn) → +∞ as
n→∞. So, for n large enough, φ1(λn) ≥ λn. Let us point out that, for φ1(λn) ≥ λn we find

(a+ b[φ1(λn)u]2)[φ1(λn)u]2

≥ (a+ b[φ1(λn)u+ + λn u
−]2)×

×
∫∫

R6

((φ1(λn)u+ + λn u
−)(x)− (φ1(λn)u+ + λn u

−)(y))φ1(λn)(u+(x)− u+(y))

|x− y|3+2s
dxdy.

(3.5)

Therefore, combining (3.3) with (3.5) we obtain

(a+ b[φ1(λn)u]2)[φ1(λn)u]2 +

∫
R3

V (x)|φ1(λn)u+|2 dx ≥

≥ (a+ b[φ1(λn)u+ + λn u
−]2)×

×
∫∫

R6

((φ1(λn)u+ + λn u
−)(x)− (φ1(λn)u+ + λn u

−)(y))φ1(λn)(u+(x)− u+(y))

|x− y|3+2s
dxdy

+

∫
R3

V (x)(φ1(λn)u+)2 dx

=

∫
R3

K(x)f(φ1(λn)u+)φ1(λn)u+ dx,

and in particular,

a[u]2

φ21(λn)
+ b[u]4 +

1

φ21(λn)

∫
R3

V (x)(u+)2 dx ≥
∫
R3

K(x)
f(φ1(λn)u+)

(φ1(λn)u+)3
(u+)4 dx.

Taking into account that λn → λ0, φ1(λn) → +∞ as n → ∞, assumptions (f3) and (f4), and
Fatou’s lemma, we get a contradiction. Hence, {φ1(λn)}n∈N is a bounded sequence.

Therefore there exists ξ0 ≥ 0 such that φ1(λn) → ξ0. Now, consider (3.4) with λ = λn, and
letting n→∞ we have

a

(
ξ20 [u+]2 − 2λ0 ξ0

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy

)
+ b

(
ξ20 [u+]2 + λ20[u

−]2 − 2λ0 ξ0

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy

)
×

×
(
ξ20 [u+]2 − 2λ0 ξ0

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy

)
+

∫
R3

V (x)(ξ0u
+)2 dx =

∫
R3

K(x)f(ξ0u
+)ξ0u

+ dx

that is h′1(ξ0) = Φu
1(ξ0, λ0) = 0. Consequently, ξ0 = φ1(λ0), i.e. φ1 is continuous.

b) There holds φ1(0) > 0.
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Assume that there exists a sequence {λn}n∈N such that φ1(λn) → 0+ and λn → 0 as n → ∞.
Using the fact that

(a+ b[φ1(λn)u+ + λn u
−]2)×

×
∫∫

R6

((φ1(λn)u+ + λn u
−)(x)− (φ1(λn)u+ + λn u

−)(y))φ1(λn)(u+(x)− u+(y))

|x− y|3+2s
dxdy

+

∫
R3

V (x)(φ1(λn)u+)2 dx

≥ aφ21(λn)[u+]2 + bφ41(λn)[u+]4 +

∫
R3

V (x)(φ1(λn)u+)2 dx

= φ21(λn)‖u+‖2 + bφ41(λn)[u+]4,

equation (3.3) and assumption (f1), we can see that

b[u+]4 ≤ ‖u
+‖2

φ21(λn)
+ b[u+]4 ≤

∫
R3

K(x)
f(φ1(λn)u+)

(φ1(λn)u+)3
(u+)4 dx→ 0, as n→∞

and this fact gives a contradiction. So we deduce that φ1(0) > 0.

c) Now we show that φ1(λ) ≤ λ for λ large.
Arguing as in the proof of a), we can see that it is not possible to find any sequence {λn}n∈N

such that λn → +∞ and φ1(λn) ≥ λn for all n ∈ N. This implies that φ1(λ) ≤ λ for λ large.

Similarly, fixed ξ0, we introduce the map h2 : [0,∞)→[0,∞) defined as h2(λ) := hu(ξ0, λ) and,
as a consequence, we can find a map φ2 such that for any ξ ≥ 0

h′2(φ2(ξ)) = Φu
2(ξ, φ2(ξ)). (3.6)

The maps φ2 fulfills the properties a), b) and c).
By c) we can find a positive constant C1 such that for every ξ, λ ≥ C1

φ1(λ) ≤ λ and φ2(ξ) ≤ ξ.
Let

C2 := max

{
max

λ∈[0,C1]
φ1(λ), max

ξ∈[0,C1]
φ2(ξ)

}
and set C := max{C1, C2}.

We define T : [0, C]× [0, C]→ R2 by

T (ξ, λ) := (φ1(λ), φ2(ξ)).

Let us note that, since φ1 and φ2 are continuous functions, we deduce that T is a continuous map.
Moreover,

T ([0, C]× [0, C]) ⊂ [0, C]× [0, C].

Indeed, for every ξ ∈ [0, C], we have that{
φ2(ξ) ≤ ξ ≤ C if ξ ≥ C1

φ2(ξ) ≤ max
ξ∈[0,C1]

φ2(ξ) ≤ C2 if ξ ≤ C1
.

Similarly, we can see that φ1(λ) ≤ C for all λ ∈ [0, C].
Then, by the Brouwer fixed point theorem, there exists (ξ+, λ−) ∈ [0, C]× [0, C] such that

T (ξ+, λ−) = (φ1(λ−), φ2(ξ+)) = (ξ+, λ−).

Owing to this fact and recalling that φi > 0 for i = 1, 2, we have ξ+ > 0 and λ− > 0. By (3.2) and
(3.6) we have

Φu
1(ξ+, λ−) = Φu

2(ξ+, λ−) = 0,

that is (ξ+, λ−) is a critical point of hu.
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Next we prove the uniqueness of (ξ+, λ−). Let w ∈M. Then we find

Φw(1, 1) =
(
〈E ′(w+ + w−), w+〉, 〈E ′(w+ + w−), w−〉

)
= (0, 0),

that is, (1, 1) is a critical point of hw.
Now, assume that (ξ0, λ0) is a critical point of hw, with 0 < ξ0 ≤ λ0. Then from (3.1) we get

〈E ′(ξ0w+ + λ0w
−), ξ0w

+〉 = 0 and 〈E ′(ξ0w+ + λ0w
−), λ0w

−〉 = 0.

From 〈E ′(ξ0w+ + λ0w
−), λ0w

−〉 = 0, we deduce that

a λ20[w
−]2 + b λ40[w

−]4 + λ20

∫
R3

V (x)(w−)2 dx− 2 a ξ0 λ0

∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

− 2 b ξ0 λ
3
0 [w−]2

∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy + b ξ20 λ

2
0[w

+]2[w−]2

− 2 b ξ30 λ0[w
+]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

− 2 b ξ0 λ
3
0[w
−]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

+ 4 b ξ20 λ
2
0

(∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

)2

=

∫
R3

K(x)f(λ0w
−)λ0w

− dx

and dividing by λ40 > 0 we obtain

a

λ20
[w−]2 + b[w−]4 +

1

λ20

∫
R3

V (x)(w−)2 dx− 2 a
ξ0

λ30

∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

− 2 b
ξ0
λ0

[w−]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy + b

ξ20
λ20

[w+]2[w−]2

− 2 b
ξ30
λ30

[w+]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

− 2 b
ξ0
λ0

[w−]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

+ 4 b
ξ20
λ20

(∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

)2

=

∫
R3

K(x)
f(λ0w

−)

(λ0w−)3
(w−)4 dx.

Using the fact that 0 < ξ0 ≤ λ0 we can see that

a

λ20
[w−]2 + b[w−]4 +

1

λ20

∫
R3

V (x)(w−)2 dx− 2
a

λ20

∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

− 2 b[w−]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy + b[w+]2[w−]2

− 2 b[w+]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy − 2 b[w−]2

∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

+ 4 b

(∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

)2

≥
∫
R3

K(x)
f(λ0w

−)

(λ0w−)3
(w−)4 dx.
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Since w ∈M, we also have

a[w−]2 + b[w−]4 +

∫
R3

V (x)(w−)2 dx− 2a

∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

− 2b[w−]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy + b[w+]2[w−]2

− 2b[w+]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy − 2b[w−]2

∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

+ 4b

(∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

)2

=

∫
R3

K(x)
f(w−)

(w−)3
(w−)4 dx.

Subtracting we have

(
1

λ20
− 1

)
‖w−‖2 − 2a

(
1

λ20
− 1

)∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

≥
∫
R3

K(x)

(
f(λ0w

−)

(λ0w−)3
− f(w−)

(w−)3

)
(w−)4 dx,

which together with (f4) yields 0 < ξ0 ≤ λ0 ≤ 1.
Next we prove that ξ0 ≥ 1. From 〈E ′(ξ0w+ + λ0w

−), ξ0w
+〉 = 0 we deduce that

aξ20 [w+]2 + bξ40 [w+]4 + ξ20

∫
R3

V (x)(w+)2 dx− 2aξ0 λ0

∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

− 2bξ30 λ0[w
+]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy + bξ20 λ

2
0[w
−]2[w+]2

− 2bξ0 λ
3
0[w
−]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

− 2bξ30 λ0[w
+]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

+ 4bξ20 λ
2
0

(∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

)2

=

∫
R3

K(x)f(ξ0w
+)ξ0w

+ dx
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and dividing by ξ40 > 0 we obtain

a

ξ20
[w+]2 + b[w+]4 +

1

ξ20

∫
R3

V (x)(w+)2 dx− 2a
λ0
ξ30

∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

− 2b
λ0
ξ0

[w+]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy + b

λ20
ξ20

[w−]2[w+]2

− 2b
λ30
ξ30

[w−]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

− 2b
λ0
ξ0

[w+]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

+ 4b
λ20
ξ20

(∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

)2

=

∫
R3

K(x)
f(ξ0w

+)

(ξ0w+)3
(w+)4 dx.

Exploiting the fact that 0 < ξ0 ≤ λ0 we find

a

ξ20
[w+]2 + b[w+]4 +

1

ξ20

∫
R3

V (x)(w+)2 dx− 2
a

ξ20

∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

− 2b[w+]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy + b[w−]2[w+]2

− 2b[w−]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

− 2b[w+]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

+ 4b

(∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

)2

≤
∫
R3

K(x)
f(ξ0w

+)

(ξ0w+)3
(w+)4 dx.

Now, using w ∈M, we also get

a[w+]2 + b[w+]4 +

∫
R3

V (x)(w+)2 dx− 2a

∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

− 2b[w+]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy + b[w+]2[w−]2

− 2b[w−]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

− 2b[w+]2
∫∫

R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

+ 4b

(∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

)2

=

∫
R3

K(x)
f(w+)

(w+)3
(w+)4 dx.



14 T. ISERNIA

Subtracting we obtain(
1− 1

ξ20

)
‖w+‖2 − 2a

(
1− 1

ξ20

)∫∫
R6

w+(x)w−(y) + w−(x)w+(y)

|x− y|3+2s
dxdy

≥
∫
R3

K(x)

(
f(w+)

(w+)3
− f(ξ0w

+)

(ξ0w+)3

)
(w+)4 dx,

and from (f4) we find ξ0 ≥ 1. Therefore, ξ0 = λ0 = 1, and this proves that (1, 1) is the unique
critical point of hw with positive coordinates.

Now, let u ∈ X be such that u± 6= 0, and let (ξ1, λ1), (ξ2, λ2) be critical points of hu with positive
coordinates. From (i) we have

ξ1u
+ + λ1 u

− ∈M and ξ2u
+ + λ2 u

− ∈M.

Set w1 := ξ1u
+ + λ1 u

− and w2 := ξ2u
+ + λ2 u

−. Then, w1 ∈ X is such that w±1 6= 0, and

w2 =

(
ξ2
ξ1

)
ξ1u

+ +

(
λ2
λ1

)
λ1 u

− =
ξ2
ξ1
w+
1 +

λ2
λ1
w−1 ∈M.

Again from (i) we can infer that
(
ξ2
ξ1
, λ2λ1

)
is a critical point for hw1 with positive coordinates.

Taking into account that w1 = w+
1 + w−1 ∈ M, we deduce that ξ2

ξ1
= λ2

λ1
= 1. Hence ξ1 = ξ2 and

λ1 = λ2.
Finally we prove that hu has a maximum global point (ξ̄, λ̄) ∈ (0,+∞) × (0,+∞). Let A+ ⊂

suppu+ and A− ⊂ suppu− positive with finite measure. Using (f3) and F (t) ≥ 0 for every t ∈ R
we can see that

hu(ξ, λ) ≤ 1

2
‖ξu+ + λu−‖2 +

b

4
[ξu+ + λu−]4 −

∫
A+

K(x)F (ξu+) dx−
∫
A−

K(x)F (λu−) dx

=
ξ2

2
‖u+‖2 +

λ2

2
‖u−‖2 − a ξ λ

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy

+
b

4

(
ξ2[u+]2 + λ2[u−]2 − 2 ξ λ

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy

)2

−
∫
A+

K(x)F (ξu+) dx−
∫
A−

K(x)F (λu−) dx.

Assume that |ξ| ≥ |λ | > 0. Then, recalling that F (t) ≥ 0 for every t ∈ R, we get

hu(ξ, λ) ≤ (ξ2 + λ2)

(
1

2
‖u+‖2 +

1

2
‖u−‖2 − 1

2

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy

)
+
b

4
(ξ2 + λ2)2

(
[u+]2 + [u−]2 −

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy

)2

−
∫
A+

K(x)F (ξu+) dx−
∫
A−

K(x)F (λu−) dx

≤ (ξ2 + λ2)

(
1

2
‖u+‖2 +

1

2
‖u−‖2 − 1

2

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy

)
+
b

4
(ξ2 + λ2)2

(
[u+]2 + [u−]2 −

∫∫
R6

u+(x)u−(y) + u−(x)u+(y)

|x− y|3+2s
dxdy

)2

−
∫
A+

K(x)F (ξu+) dx.
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Hence, assumption (f3), Fatou’s lemma and the fact that 0 < ξ2 + λ2 ≤ 2ξ2, allow us to say that

lim sup
|(ξ,λ)|→∞

hu(ξ, λ)

(ξ2 + λ2)2
≤ C̄ − 1

4
lim inf
|ξ|→∞

∫
A+

K(x)
F (ξu+)

(ξu+)4
(u+)4 dx = −∞,

where C̄ is a positive constant which depends on u+ and u−, from which, in particular, we deduce
that hu(ξ, λ)→−∞ as |(ξ, λ)| → ∞. Since hu is a continuous function, we deduce that hu has a
maximum global point (ξ̄, λ̄) ∈ (0,+∞)× (0,+∞).

Using the linearity of F and the positivity of K we find∫
R3

K(x)(F (ξu+) + F (λu−)) dx =

∫
R3

K(x)F (ξu+ + λu−) dx,

which combined with [ξu+ + λu−]2 ≥ ξ2[u+]2 + λ2[u−]2 yields

hu(ξ, 0) + hu(0, λ) = E(ξu+) + E(λu−) ≤ E(ξu+ + λu−) = hu(ξ, λ)

for all u ∈ X such that u± 6= 0 and for every ξ, λ ≥ 0. Then,

max
ξ≥0

hu(ξ, 0) < max
ξ,λ>0

hu(ξ, λ) and max
λ≥0

hu(0, λ) < max
ξ,λ>0

hu(ξ, λ),

and this proves that (ξ̄, λ̄) ∈ (0,+∞)× (0,+∞).

(iii) This is a direct consequence of Lemma 2.1-(a). �

Lemma 3.2. If {un}n∈N ⊂M and un ⇀ u in X, then u ∈ X and u± 6= 0.

Proof. Let us observe that there exists β > 0 such that

β ≤ ‖v±‖ for all v ∈M. (3.7)

Indeed, if v ∈M, then

‖v±‖2 + b[v±]4 =

∫
R3

K(x)f(v±)v± dx. (3.8)

If (V K2) is true, then, combining (3.8) with (f1), (f2) and the Sobolev inequality, we get

‖v±‖2 ≤ ε
∣∣∣∣KV
∣∣∣∣
∞
‖v±‖2 + CεC∗|K|∞‖v±‖2

∗
s .

Choosing ε ∈
(

0, 1
|K/V |∞

)
, we can find β1 > 0 such that ‖v±‖ > β1.

Now, assume that (V K3) holds. Then, using (3.8), (f̃1), (f2), the Sobolev embedding and the
Hölder inequality we obtain

‖v±‖2 ≤ Cε‖v±‖2 + C C∗(ε+ C|K|∞)‖v±‖2∗s + |K|
L

2∗α
2∗s−ν (BR)

C∗‖v±‖ν .

Since ν ∈ (2, 2∗s), we can choose ε sufficiently small such that there exists β2 > 0 such that ‖v±‖ > β2.
Therefore, setting β := min{β1, β2}, we deduce that (3.7) holds true.

Hence, if {un}n∈N ⊂M, then

β2 ≤
∫
R3

K(x)f(u±n )u±n dx for all n ∈ N.

Letting n→∞ in the above relation, and using [9, Lemma 2.2] we have

0 < β2 ≤
∫
R3

K(x)f(u±)u± dx,

from which we deduce the assertion. �

Let us denote by c∞ the number
c∞ := inf

u∈M
E(u).

Since M⊂ N , we deduce that c∞ ≥ d∞ > 0.
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4. Proof of Theorem 1.1

Let {un}n∈N ⊂M be such that

E(un)→ c∞ in R. (4.1)

Let us point out that {un}n∈N is bounded in X. Indeed, assume by contradiction that there is a
subsequence, still denoted by {un}n∈N, such that ‖un‖ → +∞ as n → ∞. Set vn := un

‖un‖ for all

n ∈ N. Then, {vn}n∈N is bounded in X, so there exists v ∈ X such that

vn ⇀ v in X, (4.2)

and by [9, Lemma 2.1] we can infer that vn→ v a.e. in R3.
Using Lemma 3.1-(i) and {un}n∈N ⊂M we have that ξ+(vn) = λ−(vn) = ‖un‖. By the definition

of vn and Lemma 3.1-(i) we also have that for any ξ > 0 and n ∈ N

E(un) = E(‖un‖ vn) ≥ E(ξ vn) =
ξ2

2
+
b ξ4

4
[vn]4 −

∫
R3

K(x)F (ξvn) dx. (4.3)

Suppose that v = 0. Then, by (4.2) and [9, Lemma 2.2] we deduce that∫
R3

K(x)F (ξvn)→ 0 for all ξ > 0. (4.4)

Taking the limit as n→∞ in (4.3), and using (4.1) and (4.4) we get a contradiction. Hence, v 6= 0.
On the other hand, by the definition of E it follows that

E(un)

‖un‖4
=

1

2‖un‖2
+
b

4

[un]4

‖un‖4
−
∫
R3

K(x)
F (vn‖un‖)
(vn‖un‖)4

(vn)4 dx. (4.5)

Using the facts that ‖un‖→∞, vn→ v a.e. in R3, assumption (f3) and Fatou’s lemma we obtain∫
R3

K(x)
F (vn‖un‖)
(vn‖un‖)4

(vn)4 dx→∞.

Hence, taking the limit as n→∞ in (4.5) we get a contradiction. Therefore {un}n∈N is bounded in
X, so there exists u ∈ X such that un ⇀ u in X. Applying Lemma 3.2 we can deduce that u± 6= 0.
By Lemma 3.1, we can find two positive constants ξ+, λ− > 0 such that ξ+u

+ + λ− u
− ∈M. Next,

we prove that ξ+, λ− ∈ (0, 1]. Combining un ⇀ u in X with [9, Lemma 2.2], we deduce the following
relations of limit ∫

R3

K(x)f(u±n )u±n dx→
∫
R3

K(x)f(u±)u± dx

and∫
R3

K(x)F (u±n ) dx→
∫
R3

K(x)F (u±) dx.

(4.6)

From these relations, un ⇀ u in X and Fatou’s lemma we find

〈E ′(u), u±〉 ≤ lim inf
n→∞

〈E ′(un), u±n 〉 = 0.

Without loss of generality, let us assume that 0 < ξ+ < λ−. Arguing as in the proof of (ii)-Lemma
3.1, it is possible to show that 0 < ξ+, λ− ≤ 1.
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Now, putting together the definition of c∞, 0 < ξ+, λ− ≤ 1, assumption (f4), un ⇀ u in X and
(4.6) we deduce that

c∞ ≤ E(ξ+u
+ + λ− u

−) = E(ξ+u
+ + λ− u

−)− 1

4
〈E ′(ξ+u+ + λ− u

−), ξ+u
+ + λ− u

−〉

=
1

4
‖ξ+u+ + λ− u

−‖2 +

∫
R3

K(x)

(
1

4
f(ξ+u

+ + λ− u
−)(ξ+u

+ + λ− u
−)− F (ξ+u

+ + λ− u
−)

)
dx

=
1

4
‖ξ+u+ + λ− u

−‖2 +

∫
R3

K(x)

(
1

4
f(ξ+u

+)ξ+u
+ − F (ξ+u

+)

)
dx

+

∫
R3

K(x)

(
1

4
f(λ− u

−)λ− u
− − F (λ− u

−)

)
dx

≤ 1

4
‖u‖2 +

∫
R3

K(x)

(
1

4
f(u+)u+ − F (u+)

)
dx+

∫
R3

K(x)

(
1

4
f(u−)u− − F (u−)

)
dx

=
1

4
‖u‖2 +

∫
R3

K(x)

(
1

4
f(u)u− F (u)

)
dx

= lim
n→∞

1

4
‖un‖2 +

∫
R3

K(x)

(
1

4
f(un)un − F (un)

)
dx

= lim
n→∞

E(un)− 1

4
〈E ′(un), un〉 = c∞,

that is we have proved that E(ξ+u
+ + λ− u

−) = c∞ and that ξ+ = λ− = 1.
Next, our purpose is to show that the minimum point is a critical point of E , that is u = u+ +u−

is a critical point of the functional E . We argue by contradiction, and we suppose that E ′(u) 6= 0. By
continuity, we can find δ, µ > 0 such that for all v ∈ X satisfying ‖v − u‖ ≤ 3δ, it holds µ ≤ |E ′(v)|.

Set D := [12 ,
3
2 ]× [12 ,

3
2 ], X± := {u ∈ X : u± 6= 0}, and define g : D → X± as g(ξ, λ) = ξu+ +λu−.

It follows from Lemma 3.1 that E(g(1, 1)) = c∞, and E(g(ξ, λ)) < c∞ in D \ {(1 , 1 )}. Define
β := max(ξ,λ)∈∂D E(g(ξ, λ)), then β < c∞.

Applying [43, Theorem 2.3] with S̃ := {v ∈ X : ‖v − u‖ ≤ δ}, c := c∞ and choosing ε :=

min
{
c∞−β

4 , µδ8

}
, there exists a deformation η ∈ C([0, 1] × X,X) such that the following assertions

hold true:

(a) η(ξ, v) = v if v ∈ E−1([c∞ − 2ε, c∞ + 2ε]);
(b) E(η(1, v)) ≤ c∞ − ε for each v ∈ X with ‖v − u‖ ≤ δ and E(v) ≤ c∞ + ε;
(c) E(η(1, v)) ≤ E(v) for all u ∈ X.

Using (b) and (c) we deduce that

max
(ξ,λ)∈∂D

E(η(1, g(ξ, λ))) < c∞. (4.7)

To complete the proof it suffices to prove that

η(1, g(D)) ∩M 6= ∅ (4.8)

because the definition of c∞ and (4.8) contradict (4.7)
Let us define

h(ξ, λ) := η(1, g(ξ, λ)),

ψ0(ξ, λ) :=
(
〈E ′(g(ξ, 1)), ξu+〉, 〈E ′(g(1, λ)), λ u−〉

)
ψ1(ξ, λ) :=

(
1

ξ
〈E ′(h(ξ, 1)), h+(ξ, 1)〉, 1

λ
〈E ′(h(1, λ)), h−(1, λ)〉

)
.

Using (iii)-Lemma 3.1 we deduce that the function γ+(ξ) = hu(ξ, 1) ∈ C1 has a unique global
maximum point ξ = 1 (let us observe that ξγ′+(ξ) = 〈E(g(ξ, 1)), ξu+〉).
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By density, given ε > 0 small enough, there is γ+,ε ∈ C∞([12 ,
3
2 ]) such that ‖γ+−γ+,ε‖C1([ 1

2
, 3
2
]) < ε

with ξ+ being the unique maximum global point of γ+,ε in [12 ,
3
2 ]. Therefore, ‖γ′+−γ′+,ε‖C([ 1

2
, 3
2
]) < ε,

γ′+,ε(1) = 0 and γ′′+,ε(1) < 0.

Similarly, setting γ−(λ) = hu(1, λ), there exists γ−,ε ∈ C∞([12 ,
3
2 ]) such that ‖γ′−−γ′−,ε‖C([ 1

2
, 3
2
]) < ε,

γ′+,ε(1) = 0 and γ′′+,ε(1) < 0.

Let us define ψε ∈ C∞(D) by ψε(ξ, λ) := (ξγ′+,ε(ξ), λ γ
′
−,ε(λ)). We note that ‖ψε−ψ0‖C(D) <

3
√
2

2 ε,
(0, 0) 6∈ ψε(∂D), and (0, 0) is a regular value of ψε in D .

Since (1, 1) is the unique solution of ψε(ξ, λ) = (0, 0) in D , by the definition of Brouwer’s degree,
we can infer that, for ε small enough, it holds

deg(ψ0,D , (0 , 0 )) = deg(ψε,D , (0 , 0 )) = sgn Jac(ψε)(1, 1), (4.9)

where Jac(ψε) is the Jacobian determinant of ψε and sgn denotes the sign function. We note that

Jac(ψε)(1, 1) = [γ′+,ε(1) + γ′′+,ε(1)]× [γ′−,ε(1) + γ′′−,ε(1)] = γ′′+,ε(1)× γ′′−,ε(1) > 0, (4.10)

so combining (4.9) with (4.10) we find

deg(ψ0,D , (0 , 0 )) = sgn[γ′′+,ε(1)× γ′′−,ε(1)] = 1.

By the definition of β we have that for any (ξ, λ) ∈ ∂D

E(g(ξ, λ)) ≤ β < β + c∞
2

= c∞ − 2

(
c∞ − β

4

)
≤ c∞ − 2ε.

This and (a) yields that g = h on ∂D . Therefore, ψ1 = ψ0 on ∂D and consequently

deg(ψ1,D , (0 , 0 )) = deg(ψ0,D , (0 , 0 )) = 1 ,

which shows that ψ1(ξ, λ) = (0, 0) for some (ξ, λ) ∈ D .
Now, in order to verify that (4.8) holds true, we prove that

ψ1(1, 1) =
(
E ′(h(ξ, 1))h(1, 1)+, E ′(h(1, 1))h(1, 1)−

)
= 0. (4.11)

As a matter of fact, (4.11) and the fact that (1, 1) ∈ D , yield h(1, 1) = η(1, g(1, 1)) ∈M.
We argue as follows. If the zero (ξ, λ) of ψ1 obtained above is equal to (1, 1) there is nothing to

do. Otherwise, we take 0 < δ1 < min{|ξ − 1|, |λ−1|} and consider

D1 :=

[
1− δ1

2
, 1 +

δ1
2

]
×
[
1− δ1

2
, 1 +

δ1
2

]
.

Then, (ξ, λ) ∈ D \D1. Hence, we can repeat for D1 the same argument used for D, so that we
can find a couple (ξ1, λ1) ∈ D1 such that ψ1(ξ1, λ1) = 0. If (ξ1, λ1) = (1, 1), there is nothing to
prove. Otherwise, we can continue with this procedure and find in the n-th step that (4.11) holds,
or produce a sequence (ξn, λn) ∈ Dn−1 \Dn which converges to (1, 1) and such that

ψ1(ξn, λn) = 0, for every n ∈ N. (4.12)

Thus, taking the limit as n→∞ in (4.12) and using the continuity of ψ1 we get (4.11). Therefore,
u := u+ + u− is a critical point of E .

Finally, we consider the case when f is odd. Clearly, the functional ψ is even. In the light of (2.9)
and c∞ ≥ d∞ > 0 we can see that ψ is bounded from below in S. Moreover, using [9, Proposition
2.1 and Lemma 2.2], we deduce that ψ satisfies the Palais-Smale condition on S. Hence, applying
Proposition 2.1 and [40], we conclude that E has infinitely many critical points.
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[1] C.O. Alves, F.J.S.A. Corrêa and T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,
Comput. Math. Appl. 49 (2005), no. 1, 85–93

[2] C.O. Alves and G.M. Figueiredo, Nonlinear perturbations of a periodic Kirchhoff equation in RN , Nonlinear
Anal. 75 (2012), no. 5, 2750–2759.

[3] C.O. Alves and M.A.S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential
vanishing at infinity, J. Differential Equations 254 (2013), no. 4, 1977–1991.

[4] V. Ambrosio, Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization
method, Ann. Mat. Pura Appl. (4) 196 (2017), no. 6, 2043–2062.

[5] V. Ambrosio, Concentrating solutions for a class of nonlinear fractional Schrödinger equations in RN , Rev. Mat.
Iberoam., doi: 10.4171/RMI/1086.

[6] V. Ambrosio, Concentrating solutions for a fractional Kirchhoff equation with critical growth, Asymptotic Anal-
ysis, doi:10.3233/ASY-191543.

[7] V. Ambrosio, G. Figueiredo, T. Isernia and G. Molica Bisci, Sign-changing solutions for a class of zero mass
nonlocal Schrödinger equations, Adv. Nonlinear Stud. 19 (2019), no. 1, 113–132.

[8] V. Ambrosio and T. Isernia, A multiplicity result for a fractional Kirchhoff equation in R3 with a general
nonlinearity, Commun. Contemp. Math. 20 (2018), no. 5, 1750054, 17 pp.

[9] V. Ambrosio and T. Isernia, Sign-changing solutions for a class of Schrödinger equations with vanishing poten-
tials, Rend. Lincei Mat. Appl. 29 (2018), 127–152;

[10] V. Ambrosio and T. Isernia, Concentration phenomena for a fractional Schrödinger-Kirchhoff type problem,
Math. Methods Appl. Sci. 41 (2018), no.2, 615–645.

[11] G. Autuori, A. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and
a critical nonlinearity, Nonlinear Anal. 125 (2015), 699–714.

[12] T. Bartsch, Z. Liu and T. Weth, Sign changing solutions of superlinear Schrödinger equations, Comm. Partial
Differential Equations 29 (2004), no. 1-2, 25–42.

[13] T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without
topology, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 3, 259–281.

[14] T. Bartsch, T. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational
problems, J. Anal. Math. 96 (2005), 1–18.

[15] S. Bernstein, Sur une classe d’équations fonctionnelles aux dérivées partielles, Bull. Acad. Sci. URSS. Sér. Math.
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