In recent years several research efforts focused on the development of high-order discontinuous Galerkin (dG) methods for scale resolving simulations of turbulent flows. Nevertheless, in the context of incompressible flow computations, the computational expense of solving large scale equation systems characterized by indefinite Jacobian matrices has often prevented the simulation of industrially-relevant computations. In this work we seek to improve the efficiency of Rosenbrock-type linearly-implicit Runge-Kutta methods by devising robust, scalable and memory-lean solution strategies. In particular, we introduce memory saving p-multigrid preconditioners coupling matrix-free and matrix-based Krylov iterative smoothers. The p-multigrid preconditioner relies on cheap element-wise block-diagonal smoothers on the fine space to reduce assembly costs and memory allocation, and ensures an adequate resolution of the coarsest space of the multigrid iteration using Additive Schwarz smoothers to obtain satisfactory convergence rates and optimal parallel efficiency of the method. In addition, the use of specifically crafted rescaled-inherited coarse operators to overcome the excess of stabilization provided by the standard inheritance of the fine space operators is explored. Extensive numerical validation is performed. The Rosenbrock formulation is applied to test cases of growing complexity: the laminar unsteady flow around a two-dimensional cylinder at Re=200 and around a sphere at Re=300, the transitional flow problem of the ERCOFTAC T3L test case suite with different levels of free-stream turbulence. As proof of concept, the numerical solution of the Boeing rudimentary landing gear test case at Re=106 is reported. A good agreement of the solutions with experimental data is documented, whereas a reduction in memory footprint of about 92% and an execution time gain of up to 3.5 is reported with respect to state-of-the-art solution strategies.
p-Multigrid matrix-free discontinuous Galerkin solution strategies for the under-resolved simulation of incompressible turbulent flows / Franciolini, M.; Botti, L.; Colombo, A.; Crivellini, A.. - In: COMPUTERS & FLUIDS. - ISSN 0045-7930. - 206:(2020). [10.1016/j.compfluid.2020.104558]
p-Multigrid matrix-free discontinuous Galerkin solution strategies for the under-resolved simulation of incompressible turbulent flows
Crivellini A.
2020-01-01
Abstract
In recent years several research efforts focused on the development of high-order discontinuous Galerkin (dG) methods for scale resolving simulations of turbulent flows. Nevertheless, in the context of incompressible flow computations, the computational expense of solving large scale equation systems characterized by indefinite Jacobian matrices has often prevented the simulation of industrially-relevant computations. In this work we seek to improve the efficiency of Rosenbrock-type linearly-implicit Runge-Kutta methods by devising robust, scalable and memory-lean solution strategies. In particular, we introduce memory saving p-multigrid preconditioners coupling matrix-free and matrix-based Krylov iterative smoothers. The p-multigrid preconditioner relies on cheap element-wise block-diagonal smoothers on the fine space to reduce assembly costs and memory allocation, and ensures an adequate resolution of the coarsest space of the multigrid iteration using Additive Schwarz smoothers to obtain satisfactory convergence rates and optimal parallel efficiency of the method. In addition, the use of specifically crafted rescaled-inherited coarse operators to overcome the excess of stabilization provided by the standard inheritance of the fine space operators is explored. Extensive numerical validation is performed. The Rosenbrock formulation is applied to test cases of growing complexity: the laminar unsteady flow around a two-dimensional cylinder at Re=200 and around a sphere at Re=300, the transitional flow problem of the ERCOFTAC T3L test case suite with different levels of free-stream turbulence. As proof of concept, the numerical solution of the Boeing rudimentary landing gear test case at Re=106 is reported. A good agreement of the solutions with experimental data is documented, whereas a reduction in memory footprint of about 92% and an execution time gain of up to 3.5 is reported with respect to state-of-the-art solution strategies.File | Dimensione | Formato | |
---|---|---|---|
Franciolini_p-Multigrid-matrix-free_2020_VoR.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
6.4 MB
Formato
Adobe PDF
|
6.4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Franciolini_p-Multigrid-matrix-free_2020_aam.pdf
Open Access dal 01/07/2022
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Creative commons
Dimensione
27.73 MB
Formato
Adobe PDF
|
27.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.