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Abstract

In recent years several research efforts focused on the development of high-order discontinuous

Galerkin (dG) methods for scale resolving simulations of turbulent flows. Nevertheless, in the

context of incompressible flow computations, the computational expense of solving large scale

equation systems characterized by indefinite Jacobian matrices has often prevented the simu-

lation of industrially-relevant computations. In this work we seek to improve the efficiency

of Rosenbrock-type linearly-implicit Runge-Kutta methods by devising robust, scalable and

memory-lean solution strategies. In particular, we introduce memory saving p-multigrid pre-

conditioners coupling matrix-free and matrix-based Krylov iterative smoothers. The p-multigrid

preconditioner relies on cheap element-wise block-diagonal smoothers on the fine space to re-

duce assembly costs and memory allocation, and ensures an adequate resolution of the coarsest

space of the multigrid iteration using Additive Schwarz smoothers to obtain satisfactory conver-

gence rates and optimal parallel efficiency of the method. In addition, the use of specifically

crafted rescaled-inherited coarse operators to overcome the excess of stabilization provided by

the standard inheritance of the fine space operators is explored. Extensive numerical validation

is performed. The Rosenbrock formulation is applied to test cases of growing complexity: the

laminar unsteady flow around a two-dimensional cylinder at Re = 200 and around a sphere at

Re = 300, the transitional flow problem of the ERCOFTAC T3L test case suite with different
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levels of free-stream turbulence. As proof of concept, the numerical solution of the Boeing rudi-

mentary landing gear test case at Re = 106 is reported. A good agreement of the solutions with

experimental data is documented, whereas a reduction in memory footprint of about 92% and an

execution time gain of up to 3.5 is reported with respect to state-of-the-art solution strategies.

Keywords: incompressible flows, implicit LES, discontinuous Galerkin, p-multigrid,
matrix-free, parallel efficiency

1. Introduction

In recent years the increasing availability of High Performance Computing (HPC) resources

strongly promoted the wide spread of Large Eddy Simulation (LES) turbulence modelling ap-

proaches. In particular, Implicit LES (ILES) based on discontinuous Galerkin (dG) spatial dis-

cretizations showed very promising results due to the favourable dispersion and dissipation prop-

erties of the method [1]. The high potential of dG approximations for the under-resolved sim-

ulation of turbulent flows has been demonstrated in the literature for those moderate Reynolds

numbers conditions where Reynolds-averaged Navier–Stokes (RANS) approaches are known to

fall short, e.g., massively separated flows [2, 3].

Research on this topic is growing fast and several efforts focused on devising efficient time

integration strategies suited for massively parallel architectures. Indeed, the inherently unsteady

nature of LES/ILES and the need to reduce time-to-results pose serious challenges to the achieve-

ment of cost effective scale-resolving computations and the ability to fruitfully exploit large

computational facilities. In this context high-order implicit time integration schemes are attrac-

tive to overcome the strict stability limits of explicit methods when dealing with high-degree

polynomial approximations, [4, 5, 6]. Nevertheless, implicit schemes require to solve large non-

linear/linear systems of equations. The sparsity pattern of the global system matrix imposes the

use of iterative methods, indeed the number of non-zeros scales as k2d, where k is the degree

of dG polynomial spaces and d is the number of dimensions of the problem. As a result high-

order accurate computations for industrially relevant application turn out to be highly memory

intensive and expensive from the CPU time point of view, even when employing state-of-the-art

iterative solvers and modern HPC facilities.

∗Corresponding author: matteo.franciolini@nasa.gov
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Previous studies considered the possibility of using memory-saving implementations of the

iterative solver in the context of discontinuous Galerkin discretizations. In [7], a matrix-free

GMRES solver was used to solve steady compressible flows. The algorithm showed to be

competitive on the overall computational efficiency for sufficiently high-order polynomial ap-

proximations when using ILU(0) and Additive Schwarz preconditioners. However, the use of

full-matrix operators was still required for preconditioning purposes, and thus only a limited

reduction of the overall memory footprint has been achieved. In [8] a matrix-free approach is

employed in the context of several time integration strategies with applications to unsteady, lam-

inar two-dimensional problems. Recently the use of a matrix-free implementation was explored

and compared to a matrix-based approach in the context of incompressible unsteady turbulent

flows, see [9, 10]. In particular the solution of the Rayleigh–Benard convection problem and

turbulent channel flows at moderately high Reynolds numbers was considered coupling matrix-

free with cheap element-wise Block-Jacobi (EWBJ) preconditioners. The algorithm showed

considerable memory savings: being the use of off-diagonal Jacobian blocks not required for

time stepping purposes and preconditioning, the overall memory footprint could be significantly

reduced. Unfortunately, when dealing with stiff problems, e.g., stretched elements, low Mach

flows or large time step, a severe convergence degradation is observed when using EWBJ pre-

conditioners: the solution is achieved only after a considerable number of iterations. Bearing

that in mind, it is trivial to highlight that one of the main challenges to obtain a memory ef-

ficient implicit solution strategy for complex unsteady flow problems is the implementation of

an efficient and memory saving preconditioning method to be coupled to matrix-free iterative

solvers. For example, in [11] the use of a matrix-free implementation is coupled with precondi-

tioner operators expressed in separable tensor product form, whose arithmetic complexity scales

more favourably with the order of accuracy of the scheme than a standard block operator. Other

implementations in the same line exist in literature, see for example [12], where the best Kro-

necker product approximation of the block diagonal portion of the Jacobian is solved through

the use of a matrix-free Singular Value Decomposition. In [13] the same objective is obtained

through the solution of an optimization problem. Despite being memory saving and capable of

reducing the computational complexity of the algorithm due to the use of tensor product matri-

ces, the main drawback of those strategies is the fact that they are based on approximations of

the EWBJ preconditioner, and they fail to solve efficiently complex flow problems involving stiff
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computational meshes.

On the other hand, multilevel methods have been considered in the past as an efficient way to

solve both linear and non-linear problems arising from high-order discontinuous Galerkin dis-

cretizations. Such methods were first proposed in a dG context by Helenbrook et al. [14, 15],

Bassi and Rebay [16], Fidkowski et al. [17]. Those authors focused on the analysis of a p-

multigrid (p-MG) non-linear solver, proving convergence properties and performance in the con-

text of compressible flows using element- or line-Jacobi smoothing. In particular, Ref. [15]

analyses the effects of different coarse spaces, i.e., those obtained from the re-discretization

of the problem (inherited) from those generated through Galerkin projection (non-inherited).

Several authors also considered multigrid operators built on agglomerated coarse grids, such as

h-multigrid, see for example [18, 19, 20]. The possibility of using multigrid operators as a pre-

conditioner of an iterative solver was also explored in the context of steady compressible flows,

see for example [21, 22]. In these works, the algorithm is reported as the most efficient and scal-

able if compared to single-grid preconditioners, and a large reduction in the number of iteration

to reach convergence was achieved. More recently, an h-multigrid preconditioner was proposed

in [23] in the context of steady and unsteady incompressible flows. In this latter work a spe-

cific treatment for inherited dG discrezations of viscous terms on coarse levels was introduced,

significantly improving the performance of the multigrid iteration.

The present work aims to devise a memory saving preconditioning strategy to be coupled with

a matrix-free iterative solver for the solution of complex flow problems, extending and general-

izing the techniques proposed in [9, 7, 24] to deal with stiff unsteady turbulent flow problems.

The time-accurate numerical framework relies on linearly-implicit Runge–Kutta schemes of the

Rosenbrock type. This class of schemes requires the solution of a linear systems at each stage

while the matrix is assembled only once per time step. For the linear systems solution we rely on

a matrix-free implementation of the Flexible GMRES (FGMRES) method, coupled with a mem-

ory saving p-MG preconditioner. In particular, the p-multigrid iteration is built using a memory

saving smoother on finest level, and standard matrix-based GMRES smothers on coarse levels.

The numerical experiments show that this technique allows to retain the memory footprint reduc-

tion presented in [9], while improving the computational efficiency on stiff problems. Finally,

the use of a rescaled-inherited approach for the coarse space operators proposed in [23] in the

context of h-multigrid is here assessed for the p version of the multigrid solver on the iterative
4



performance. While the use of rescaled coarse spaces is recommended to maintain acceptable

convergence rates of h-multigrid solvers, smaller advantages have been observed in our experi-

ments, which vanish for convection dominated cases such as the under-resolved simulations of

turbulent flows.

The paper presents an extensive validation of the numerical strategy on test cases involving

high-order accurate ILES of complex flow configurations using unstructured meshes made of

severely stretched and curved elements. The effectiveness of the proposed coupling between a

matrix-free linear solver and a matrix-free p-multigrid preconditioner is proved by comparing

computational time, memory footprint of the solver as well as the algorithmic scalability of the

preconditioning strategy on HPC facilities using a domain decomposition parallelization method.

The paper is structured as follows. Section 2 describes the space and time discretization and

presents the multigrid framework here employed, with particular attention to the coarse spaces

assembly and the intergrid transfer operators. Section 3 reports a thorough assessment of the

stabilization scaling on test cases of growing complexity involving unsteady flows: the unsteady

flow over a two dimensional cylinder at Re = 200, and the unsteady flow over a sphere at

Re = 300. Section 4.1 demonstrates the advantages of using the proposed solver for the solution

of the T3L1 flow problem of the ERCOFTAC test case suites, i.e., the incompressible turbulent

flow over a rounded leading-edge flat plate at Re = 3450 with different levels of free-stream

turbulence. After a brief physical discussion of the solution accuracy, significant memory savings

as well as improvements in computational efficiency with respect to matrix-based methods are

documented. As proof of concept, the solution of the Boeing rudimentary landing gear test case

at Re = 106 is reported in Section 4.2, including a favourable agreement with experimental data.

2. The numerical framework

In this section the space and time discretizations of the incompressible Navier–Stokes (INS)

equations are briefly introduced together with a detailed description of the main building blocks

of the p-multigrid preconditioner.
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2.1. The dG discretization

We consider the unsteady INS equations in conservation form in a fixed Cartesian reference

frame,

∂tu + ∇ · (u ⊗ u + pI) − ν∇ ·
[(
∇ ⊗ u + (∇ ⊗ u)t

)
−

2
3

(∇ · u) I
]
= 0 in Ω × (0, tF), (1a)

∇ · u = 0 in Ω × (0, tF). (1b)

equipped with suitable boundary conditions and initial value, where u ∈ Rd is the velocity vector,

p ∈ R is the pressure, ν denotes the (constant) viscosity, tF is the final simulation time, n is the

unit outward normal to ∂Ω and I = δi j ei⊗e j, i, j = 1, ..., d, is the identity matrix. The density has

been assumed to be uniform and equal to one and the Stokes hypothesis is used for the definition

of viscous stresses. Introducing the convective and viscous flux functions

Fν
(
∂ui
∂x j

)
= ν

(
∇ ⊗ u + (∇ ⊗ u)t) − 2

3ν(∇ · u)I = ν

(
∂u j

∂xi
+
∂ui

∂x j
−

2
3
∂uk

∂xk
δi j

)
ei ⊗ e j

Fc(ui, p) = u ⊗ u + pI =
(
ui u j + pδi j

)
ei ⊗ e j

(2)

Eqs. (1a)-(1b) can be compactly rewritten in integral form as∫
Ω

∂tu +
∫
Ω

∇ · (Fc − Fν) = 0, (3a)∫
Ω

∇ · u = 0. (3b)

In order to define the dG discretization we introduce a triangulation Th of the computational

domain Ω, that is the collection of disjoint mesh elements κ ∈ Th such that
⋃
κ∈Th
κ = Ωh, where

Ωh is a suitable approximation of Ω. The mesh skeleton Fh is the collection of mesh faces

σ. Internal faces σ ∈ F i
h are defined as the intersection of the boundary of two neighboring

elements: σ = ∂κ
⋂
∂κ′ with κ , κ′. Boundary faces σ ∈ F b

h reads σ = ∂κ
⋂
∂Ωh. Clearly

Fh = F
i

h ∪F
b

h . Each component of the velocity vector and the pressure is sought (for 0 < t < tF)

in the so called broken polynomial spaces defined over Th

Pk
d(Th) =

{
vh ∈ L2(Ωh) | ∀κ ∈ Th, vh|κ ∈ Pk

d(κ)
}

(4)

where Pk
d(κ) is the space of polynomial functions in d variables and total degree k defined over

κ. Since no continuity requirements are enforced at inter-element boundaries, vh admits two-

valued traces on the partition of mesh skeleton F i
h . Accordingly we introduce average and jump
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operators over internal faces

Average : {{vh}}σ =
1
2

(vh|κ + vh|κ′ ) , Jump : [[vh]]σ = (vh|κ − vh|κ′ ) . (5)

Specific definitions of averages and jumps will be introduced over boundary faces to take into

account Dirichlet and Neumann boundary conditions.

The dG discretization of the Navier-Stokes equations reads: find (uh, ph) ∈ [Pk(Th)]d ×Pk(Th)

such that, for all (vh, qh) ∈ [Pk(Th)]d × Pk(Th):∑
κ∈Th

∫
κ

∂tuh · vh −
∑
κ∈Th

∫
κ

(
Fc

h − F̃νh
)

: ∇hvh +
∑
σ∈Fh

∫
σ

nσ ·
(
F̂c

h − F̂νh
)
· [[vh]] = 0,

−
∑
κ∈Th

∫
κ

uh · ∇hqh +
∑
σ∈Fh

∫
σ

nσ · ûh
[[

qh
]]

= 0,
(6)

where [[vh]] =
[[

vh,i
]]

ei and nσ is the normal vector with respect to σ. While obtaining (6)

from (3) follows the standard dG FE practice (element-by-element integration by parts after

having multiplied by a suitable test function), the dG method hinges on the definition of suitable

numerical viscous F̃νh, F̂νh and inviscid fluxes F̂c
h, ûh.

According to the BR1 scheme, proposed in [25], ∀τh ∈ [Pk
d(Th)]d, vh ∈ Pk

d(Th), the consistent

gradient Gh(vh) is such that∫
Ω

(Gh(vh)−∇vh) · τh=−
∑
σ∈Fh

∫
σ

[[vh]] {{τh}} · nσ:=
∑
σ∈Fh

∫
Ω

rσ([[vh]]) · τh=
∑
κ∈Th

∫
κ

Rκ(vh) · τh

where rσ([[vh]]) : Pk
d(σ) → [Pk

d(Th)]d is the local lifting operator, Rκ(vh) :=
∑
σ∈F∂κ

rσ([[vh]]) is

the elemental lifting operator and F∂κ is the set of faces belonging to ∂κ. In this work we rely

on the BR2 scheme, introduced to reduce the stencil of the BR1 discretization and analyzed in

the context of the Poisson problem by [26] and [27]. The BR2 viscous fluxes are functions of

elemental spatial derivatives corrected by suitable lifting operator contributions

F̃νh = Fν
(
∂uh,i

∂x j
− Rκj(uh,i)

)
, and F̂νh = Fν

({{
∂uh,i

∂x j
− ησrσj (

[[
uh,i

]]
)
}})
, (7)

F̂ν ensures consistency and stability of the scheme and F̃ν guarantees the symmetry of the for-

mulation. As proved by Brezzi et al. [26], coercivity for the BR2 discretization of the Laplace

equation holds provided that ησ is greater than the maximum number of faces of the elements

sharing σ. The inviscid numerical fluxes of the dG discretization result from the exact solu-

tion of local Riemann problems based on an artificial compressibility perturbation of the Euler

equations, as proposed in [28].
7



We remark that, while for the continuous form of the INS the divergence of the velocity term in

Eqs. (1a)-(1b) exactly vanishes, for the numerical problem this solenoidal constraint is satisfied

at a discrete level [28, 29]. Numerical evidences, see [30], suggested that retaining the ∇ · u term

in the discrete form is beneficial in terms of robustness.

2.2. Implicit time accurate integration

Time integration of Equation (6) can be presented in compact form by collecting the ve-

locity vector and the pressure polynomial expansions in the vector wh
def
= (uh,1, ..., uh,d, ph) ∈

[Pk
d(Th)]d+1 and identifying the unknown vector at time tn with wn

h, that is wn
h = [uh(tn), ph(tn)].

Moreover, we introduce the flux functions F̃h(wh) def
=

[
Fc

h − F̃νh,uh

]
∈ Rd ⊗ Rd+1 and F̂h(wh) def

=[
F̂c

h − F̂νh, ûh

]
∈ Rd ⊗ Rd+1, collecting the viscous and inviscid flux contributions. For all

wh, zh ∈ [Pk
d(Th)]d+1, we define the residual of the dG spatial discretization in (6) as follows

fh(wh, zh) = −
∑
κ∈Th

∫
κ

d+1∑
i=1

d∑
p=1

F̃p,i(w)
∂zi

∂xp
+

∑
σ∈Fh

∫
σ

d+1∑
i=1

d∑
p=1

nσp F̂p,i(w) [[zi]] , (8)

where we dropped the mesh step size subscript when working in index notation. For all

wh, δwh, zh ∈ [Pk
d(Th)]d+1, the linearization of the residual reads

jh(wh, δwh, zh) =
∂ fh(wh, zh)
∂wh

δwh. (9)

In particular we distinguish the inviscid j!νh (wh, δwh, zh) and the viscous jνh(δwh, zh) contributions

j!νh (wh, δwh, zh) = −
∑
κ∈Th

∫
κ

d+1∑
i, j=1

d∑
p=1

∂F̃p,i

∂w j
(wh) δw j

∂zi

∂xp
+

∑
σ∈Fh

∫
σ

d+1∑
i, j=1

d∑
p=1

nσp
∂F̂p,i

∂w j
(wh) δw j [[zi]] ,

(10)

[1] jνh(δwh, zh) = −
∑
κ∈Th

∫
κ

d+1∑
i, j=1

d∑
p,q=1

∂F̃p,i

∂
(
∂w j/∂xq − Rκq(w j)

) (
∂(δw j)
∂xq

− Rκq(δw j)
)
∂zi

∂xp
+

+
∑
σ∈Fh

∫
σ

d+1∑
i, j=1

d∑
p,q=1

nσp
∂F̂p,i

∂
(
∂w j/∂xq − ησrσq (w j)

) {{
∂(δw j)
∂xq

− ησ rσq
([[
δw j

]])}}
[[zi]] .

(11)

Note that, since Fν is a linear function, (11) is a bilinear form, while, by abuse of notation, (10)

is a bilinear (resp. trilinear) when Fc
p,i(w) is a linear (resp. non-linear) function of w j.

In this work time integration is performed via the multi-stage linearly implicit (Rosenbrock-

type) Runge-Kutta method. As an appealing feature the method requires the solution of a linear

system at each stage s = {1, · · · , ns}, while the Jacobian matrix needs to be assembled only once
8



per time step. Prior to introducing the formulation for the temporal discretization we define the

following mass bilinear form: for all wh, zh ∈ [Pk(Th)]d+1

mh(wh, zh) =
∑
κ∈Th

∫
κ

d∑
i=1

wi zi. (12)

Given the initial condition w0
h = wh(t = 0) ∈ [Pk(Th)]d+1 we define the sequence wn+1

h itera-

tively by means of the Rosenbrock scheme as described in Algorithm 1, where γ, ai j, ci j and mi

are real coefficients proper of the Rosenbrock scheme and δws
h, with s = {1, · · · , ns}, the solu-

tions at each stage of the scheme that are properly combined to compute the solution wn+1
h at the

next time level.

Algorithm 1 Multi-stage linearly implicit (Rosenbrock-type) Runge-Kutta method

1: set wn
h = w0

h, nF =
tF

δt
2: for n = 0, ..., nF do
3: for s = 1, ..., ns do
4: set δph = 0 ∧ δqh = 0
5: for o = 1, ..., s − 1 do
6: δph += as,o δwo

h
7: δqh += cs,o δwo

h
8: end for
9: find δws

h ∈ [Pk(Th)]d+1 such that, for all zh ∈ [Pk(Th)]d+1

1
γδt

mh(δws
h, zh) + jh(wn

h, δw
s
h, zh) = − fh(wn

h+δph, zh) −
1
δt

mh(δqh, zh) (13)

10: end for
11: for o = 1, ..., s do
12: set wn+1

h = wn
h + moδwo

h
13: end for
14: end for

The Rosenbrock time marching strategy in Algorithm 1 advances the solution in time by re-

peatedly solving the linearized system of equations (13), once for each stage of the Runge-Kutta

method. Introducing the Jacobian and mass matrix operators

(Jh δwh, zh)L2(Ω) = jh(wh, δwh, zh) ∀wh, δwh, zh ∈ [Pκℓd (Th)]d+1,

(Mh δwh, zh)L2(Ω) = mh(δwh, zh) ∀ δwh, zh ∈ [Pκℓd (Th)]d+1,
(14)

the equation system (13) can be compactly rewritten as follows:

Gh δwh = gh (15)
9



where Gh =
1
γδt Mh+ Jh is the global matrix operator, and δwh, gh ∈ [Pk

d(Th)]d+1 are the unknown

polynomial function and the right-hand side arising from the linearly-implicit Runge-Kutta time

discretization, respectively. In this work the four stage, order three (ROSI2PW) scheme of Rang

and Angermann [31] was employed. This scheme preserves its formal accuracy when applied to

the system of DAEs arising form the spatial discretization of the INS equations as demonstrated

in [9]. All the linear systems are solved using a flexible GMRES iterative scheme. The solution

process terminates when a relative drop in the residual reaches 10−5, which was found adequate

for all the numerical experiments presented in this work. In order to report comparisons of

different preconditioning strategies, the right preconditioning method is employed such that the

residual drop definition is not affected by the choice of the operator.

2.3. Matrix-free iterative solver

The flexible GMRES can be implemented matrix-free following the approach of [32], where

the product between the primal Jacobian and the defect vector is approximated by its first order

Taylor expansion. Given wh, dh ∈ [Pκℓd (Th)]d+1, the Jacobian trilinear form can be expressed as

jh(wn
h, dh, zh) =

1
∆

(
f (wn

h+∆ dh, zh) − f (wn
h, zh)

)
, ∀zh ∈ [Pκℓd (Th)]d+1, (16)

which involves bilinear form evaluations. According to [33],

∆ = ϵ

√
1 + ∥wn

h∥L2(Ω)

∥dh∥L2(Ω)
, (17)

with ϵ = 10−9 for all the computations [9, 10, 34]. We remark that the use of (16) does not change

the behaviour of the iterative solver for relative tolerances of practical engineering interest, i.e.

when those are greater than the numerical perturbation ϵ, and does not increase the cost-per-

iteration at high order of accuracy, since the algorithm complexity of the residual evaluation

scales equally to that of a matrix-vector product with the order of polynomial approximation.

Since the global system matrix is not required for the time integration, the Jacobian matrix needs

to be assembled for preconditioning purposes only, and such flexibility can be exploited to reduce

the matrix-assembly time and memory footprint, for example by evaluating only parts of the

Jacobian blocks and/or reusing those blocks for several successive iterations. See [9] for further

details on the matrix-free implementation.

As preconditioners for GMRES iterators we consider the following options:
10



1. ASM(i,ILU( j)) - Additive Schwarz domain decomposition Method (ASM) preconditioners

with i levels of overlap between sub-domains and an ILU decomposition for each sub-

domain matrix with j levels of fill. In the overlap region, the residuals on the ghost points

are used for the application of the incomplete LU factors, while the result values in the ghost

points are discarded;

2. Block-Jacobi (BJ) or ASM(0,ILU(0)) - ASM preconditioner with no overlap between sub-

domains (mesh partitions) and an ILU(0) decomposition for each sub-domain matrix with

same level of fill of the original matrix;

3. EWBJ - Element-wise block Jacobi, equivalent to the BJ preconditioner applied to the

block-diagonal iteration matrix. This preconditioner is implemented as the element-by-

element LU factorization of the diagonal blocks.

Note that in serial computations ASM(i,ILU(j)) and BJ fall back to ILU(j) and ILU(0), respec-

tively. ASM and BJ performance differ when the computation is performed in parallel, depending

on the number of sub-domains. While efficiency of BJ decreases while increasing the number

of sub-domains, ASM seeks to heal the convergence degradation at the expense of an increased

memory footprint of the solver as the number of partitions rises, as part of the global matrix non-

zeros entries are replicated in neighboring sub-domains. Conversely, the BJ preconditioner falls

back to the EWBJ in the case of one element per partition. EWBJ has optimal scalability proper-

ties, involving local-to-each-element operations. In addition, when using a matrix-free iterative

solver, only the use of EWBJ leads to a memory saving, as it allows to skip the computation

of the off-diagonal contributions and therefore to reduce the matrix-assembly computation time.

The code relies on the PETSc library to handle linear solvers and parallelism [35].

For the sake of compactness, in the remaining of the paper we will denote a solver-

preconditioner couple following the convention:

SOLVER(MatVecOpt)[PREC(Opt)].

The MatVecOpt label describes how the matrix-vector products are performed, i.e. in a matrix-

free (MF) or matrix-based (MB) fashion, while PREC(Opt) describes the type of preconditioning

employed.
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2.4. Multigrid preconditioners

To increase the performance of linear system solutions on stiff space discretizations, we inves-

tigate the use of multigrid preconditioning approaches to solve the global equation system (15).

The basic idea is to exploit iterative solvers to smooth-out the high-frequency component of the

error with respect to the unknown exact solution. Indeed, being iterative solvers not effective at

damping low-frequency error components, the iterative solution of coarser problems is exploited

to circumvent this issue, shifting the low-frequency modes towards the upper side of the spec-

trum. This simple and effective strategy allows to obtain satisfactory rates of convergence all

along the iterative process.

As the work aims at obtaining solutions with high-order polynomials on rather few and pos-

sibly curved mesh elements, and targets the use of the solver on large HPC facilities, we build

coarse spaces by reducing the degree of polynomial approximation of the solution of the dG

discretization with respect to the original problem of degree k, commonly referred in the liter-

ature as p-multigrid method. The strategy show some advantages over h-multigrid approaches

on agglomerated mesh elements other than the ease of implementation [36], as the cost of ap-

plying intergrid transfer operators is almost negligible. We consider L coarse levels spanned by

the index ℓ = 1, ..., L and indicate the fine and coarse levels with ℓ = 0 and ℓ = L, respectively.

The polynomial degree of level ℓ is kℓ and the polynomial degrees of the coarse levels are chosen

such that kℓ < kℓ−1, l = 1, ..., L, with k0 = k. Accordingly the polynomial spaces associated to the

coarse levels read Pκℓd (Th). The coarse problems corresponding to (15) are in the form

Gℓ δwℓ = gℓ (18)

where Gℓ is the global matrix operator on level l and δwℓ, gℓ ∈ [Pκℓd (Th)]d+1 are the unknown

function and the known right-hand side, respectively.

A crucial aspect for the efficiency of the p-multigrid iteration is related to the computational

cost of building coarse grid operators Gℓ. While it is possible to assemble the bilinear and trilinear

forms jh, fh and mh of Section 2.2 on each level ℓ with the corresponding polynomial functions

wℓ, δwℓ, zℓ ∈ Pkℓ
d (Th), significantly better performances are achievable by restricting the fine grid

operator by means of so called Galerkin projections. The former and the latter strategies are

named non-inherited and inherited p-multigrid, respectively. As will be clear in what follows the

construction of coarse operators is trivial when polynomial expansions are based on hierarchical

orthonormal modal basis functions.
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2.4.1. Restriction and prolongation operators

In this section we describe the prolongation and restriction operators required to map polyno-

mial functions on finer and coarser levels, respectively.

Since Pκℓd (Th) ⊃ Pκℓ+1
d (Th), the prolongation operator Iℓ

ℓ+1 : Pκℓ+1
d (Th) → Pκℓd (Th), is the injec-

tion operator such that

Iℓℓ+1wℓ+1 = wℓ+1, ∀wℓ+1 ∈ Pκℓ+1
d (Th), (19)

which in practice computes wℓ ∈ Pκℓd (Th) by padding wℓ+1 with zeros on the higher-order modes.

The prolongation operator from level ℓ to level 0 can be recursively defined by the composition

of inter-grid prolongation operators: I0
ℓ
= I0

1 I
1
2 ...I

ℓ−1
ℓ

.

The (L2 projection) restriction operator Iℓ+1
ℓ

: Pκℓd (Th)→Pκℓ+1
d (Th), is such that∑

κ∈Th

∫
κ

(Iℓ+1
ℓ wℓ − wℓ+1) zℓ+1 = 0, ∀wℓ ∈ Pκℓd (Th), ∀zℓ+1 ∈ Pκℓ+1

d (Th), (20)

and the restriction operator from level 0 to level ℓ reads Iℓ0 = I
ℓ
ℓ−1 ...I

2
1 I

1
0.

When applied to vector functions wℓ+1 ∈ [Pκℓ+1
d (Th)]d+1 the interpolation operators act com-

ponentwise, e.g., Iℓ
ℓ+1wℓ+1 =

∑d+1
i=1 I

ℓ
ℓ+1wi. It is interesting to remark that using hierarchical

orthonormal modal basis functions restriction and prolongation operators are trivial, in particu-

lar restriction from Pκℓd (Th) into Pκℓ+1
d (Th) is as simple as keeping the degrees of freedom of the

modes of order k ≤ κℓ+1 and discarding the remaining high-frequency modes.

2.5. Fine and coarse grid Jacobian operators

The non-inherited and the inherited version (denoted with superscript I) of the inviscid and

viscous Jacobian operators introduced in (10)-(11), can be defined as follows for ℓ = 1, ..., L

(J !ν
ℓ δwℓ, zℓ)L2(Ω) = j!ν

ℓ
(wℓ, δwℓ, zℓ) ∀wℓ, δwℓ, zℓ ∈ [Pκℓd (Th)]d+1

(Jνℓ δwℓ, zℓ)L2(Ω) = jν
ℓ
(δwℓ, zℓ) ∀ δwℓ, zℓ ∈ [Pκℓd (Th)]d+1

(J !ν,I
ℓ
δwℓ, zℓ)L2(Ω) = j!ν

ℓ
(wℓ,I0

ℓ
δwℓ,I0

ℓ
zℓ) ∀wℓ, δwℓ, zℓ ∈ [Pκℓd (Th)]d+1

(Jν,I
ℓ
δwℓ, zℓ)L2(Ω) = jν

ℓ
(I0
ℓ
δwℓ,I0

ℓ
zℓ) ∀ δwℓ, zℓ ∈ [Pκℓd (Th)]d+1

(21)

The main benefit of inherited algorithms is the possibility to efficiently compute coarse grid

operators by means of the so called Galerkin projection, avoiding the cost of assembling bilinear

and trilinear forms. The procedure is described in what follows, focusing on the benefits of using

hierarchical orthonormal basis functions.
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The matrix counterpart JI
ℓ

of the operator JIℓ = Jν,I
ℓ
+ J !ν,I

ℓ
is a sparse block matrix with

block dimension NκDoF = dim
(
Pκℓd (κ)

)
and total dimension card(Th) NκDoF (d+1). The matrix is

composed of diagonal blocks Jℓ,Iκ,κ and off-diagonal blocks Jℓ,I
κ,κ
′ , the latter taking care of the cou-

pling between neighboring elements κ, κ′ sharing a face σ. Once the fine system matrix J0 is

assembled, the diagonal and off-diagonal blocks of the Jacobian matrix of coarse levels can be

inherited recursively and matrix-free as follows

Jℓ+1,I
κ,κ =Mκ

ℓ+1,ℓ

(
Jℓ,Iκ,κ

) (
Mκ
ℓ+1,ℓ

)t
, Jℓ+1,I

κ,κ
′ =Mκ

ℓ+1,ℓ

(
Jℓ,Iκ,κ′

) (
Mκ′

ℓ+1,ℓ

)t
. (22)

The projection matrices read

Mκ
ℓ+1,ℓ =

(
Mκ
ℓ+1

)−1
∫
κ

φℓ+1⊗ φℓ, where Mκ
ℓ+1 =

∫
κ

φℓ+1⊗ φℓ+1, (23)

and φℓ represents the set of basis functions spanning the space Pκℓd (κ). When using hier-

archical orthonormal basis functions, Mκ
ℓ+1 is the unit diagonal elemental mass matrix and

Mκ
ℓ+1,ℓ ∈ R

dim(Pκℓ+1
d (κ))×dim(Pκℓd (κ)) is a unit diagonal rectangular matrix. Accordingly the Galerkin

projection in (22) falls back to a trivial and inexpensive sub-block extraction.

Being Pk0
d (Th) ⊃ Pκℓd (Th), it can be demonstrated that inherited and non-inherited p-multigrid

algorithms lead to the same inviscid Jacobian operators, that is J !ν,I
ℓ
= J !ν

ℓ . As opposite inher-

ited and non-inherited viscous Jacobian differ because of the terms involving lifting operators.

Note that inherited lifting operators act on traces of polynomial functions mapped into Pk0
d (Th),

accordingly

inherited p-multigrid lifting operators, rσ([[zh]]) : Pk0
d (σ)→ [Pk0

d (Th)]d, (24)

non-inherited p-multigrid lifting operators, rσ([[zh]]) : Pκℓd (σ)→ [Pκℓd (Th)]d. (25)

Interestingly, using the definitions of the global and local lifting operators, the bilinear form
14



can be rewritten as follows

jνh(δwh, zh) = −
∑
κ∈Th

∫
κ

d+1∑
i, j=1

d∑
p,q=1

∂F̃p,i

∂
(
∂w j/∂xq − Rκq(w j)

) ∂(δw j)
∂xq

∂zi

∂xp
+

+
∑
σ∈Fh

∫
σ

d+1∑
i, j=1

d∑
p,q=1

nσq
∂F̃p,i

∂
(
∂w j/∂xq − Rκq(w j)

) [[
δw j

]] {{
∂zi

∂xp

}}
+

+
∑
σ∈Fh

∫
σ

d+1∑
i, j=1

d∑
p,q=1

nσp
∂F̂p,i

∂
(
∂w j/∂xq − ησrσq (w j)

) {{
∂(δw j)
∂xq

}}
[[zi]]+

−
∑
σ∈Fh

∫
σ

d+1∑
i, j=1

d∑
p,q=1

ησ
∂F̂p,i

∂
(
∂w j/∂xq − ησrσq (w j)

) rσq
([[
δw j

]])
rσp ([[zi]]) (26)

showing that only the last term, i.e., the stabilization term, cannot be reformulated lifting-free.

In particular, it can be demonstrated that the inherited stabilization term introduces an excessive

amount of stabilization with respect to its non-inherited counterpart, see [36] for the theoretical

estimates. In the context of h-multigrid solution strategies, this showed to be detrimental for

multigrid algorithm performance, see [23], where the authors consider dG discretizations of the

INS equations, and [37], where preconditioners for weakly over-penalized symmetric interior

penalty dG discretization of elliptic problems are devised. In those works, the use of rescaled-

inherited coarse space operators was proposed in order to recover the correct amount of stabi-

lization of the viscous operator and the optimal multigrid efficiency. In the numerical results, the

use of rescaled inherited coarse grid operators extended to the p-version of the multigrid linear

solver [36] is also assessed. A rather limited benefits was observed on practical three dimensional

simulations involving convection-dominated regimes, which justifies the use of standard inher-

ited approaches for production runs involving the under-resolved direct numerical simulations of

turbulent flows.

2.5.1. The p-multigrid iteration

In this section we provide an overlook of the sequence of operations involved in p-multigrid

iterations. The recursive p-multigrid V-cycle and full p-multigrid V-cycle for the problem

Gℓ δwℓ = gℓ on level ℓ reads:
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Algorithm 2 wℓ = MGV(ℓ, gℓ,wℓ)
if (ℓ = L) then

wℓ = SOLVE(Gℓ, gℓ, 0)
end if
if (ℓ < L) then

Pre-smoothing:
wℓ = SMOOTH(Gℓ, gℓ,wℓ)

Coarse grid correction:
dℓ = gℓ − Gℓwℓ
dℓ+1 = I

ℓ+1
ℓ

dℓ
eℓ+1 = MGV(ℓ + 1, dℓ+1, 0)
ŵℓ = wℓ + Iℓℓ+1eℓ+1

Post-smoothing:
wℓ = SMOOTH(Gℓ, gℓ, ŵℓ)

end if
return wℓ

Algorithm 3 wℓ = MGfull(ℓ, gℓ,wℓ)
if (ℓ = L) then

wℓ = SOLVE(Gℓ, gℓ, 0)
end if
if (ℓ < L) then

gℓ+1 = I
ℓ+1
ℓ

gℓ
ŵℓ+1 = MGfull(ℓ + 1, gℓ+1, 0)
V-cycle correction:
ŵℓ = Iℓℓ+1ŵℓ+1
dℓ = gℓ − Gℓŵℓ
eℓ = MGV(ℓ, dℓ, 0)
wℓ = ŵℓ + eℓ

end if
return wℓ

To obtain an application of the p-multigrid preconditioner the multilevel iteration is invoked on

the problem Gh δwh = gh. While one MGV iteration requires two applications of the smoother

on the finest level (one pre- and one post-smoothing) and one application of the coarse level

smoother independently from the number of levels, one MGfull iteration requires one application

of the finest level smoother and L applications of the coarse level smoother.

In this work the p-multigrid Full-V cycle iteration will be applied for the numerical solution of

linearized equations systems arising in Rosenbrock time marching strategies for dG discretiza-

tions of incompressible flow problems. In the context of such problems we seek for the best

performance employing full p-multigrid and tuning preconditioners and smoothing options. We

remark that, in this work, all the smoothers of the multigrid strategy are chosen to be GMRES,

and thus two nested Krylov iterative solvers are invoked. In this setting, the outer solver follows

the flexible GMRES implementation [38], since the action of the multigrid linear solver needs

to be stored at each iteration. In order to reduce the overall memory footprint, a matrix-free im-

plementation of the p-multigrid linear solver needs to be employed. To this end, we recall what

was reported in Section 2.6 regarding matrix-free iterative strategies, and we remark that only

if EWBJ preconditioner is coupled with a matrix-free GMRES smoother on the finest space, an

overall reduction of memory footprint of the solver can be achieved. As demonstrated in the

results section, such strategy can be conveniently used for practical simulations without spoiling
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the convergence rates of the multigrid iteration. Another important aspect regarding the choice

of the smoothers involves the coarse space. To this end, the use of more powerful precondi-

tioners like BJ or ASM for the smoothers on the coarsest space is typically suggested to ensure

a satisfactory convergence rate not polluted by the domain decomposition. While matrix-free

iterative solvers can be employed at no additional cost at high order, they are more expensive

for low order polynomials with respect to matrix-based methods, and thus the use of the latter

would speed-up the solution process. In this configuration, the off-diagonal blocks needed by

the coarse level operators can be computed at the coarsest polynomial degree for the sake of

efficiency. In the rest of the paper several combinations of preconditioners are investigated with

particular attention to the quantification of the parallel performance and of the memory savings.

We point out that, since the number of non-zeros of the primal Jacobian matrix scales as k2d, the

memory footprint of a coarse space matrix can be less than 1% that of the EWBJ used on the fine

space, and thus the overall memory saving is not compromised.

2.6. Memory footprint considerations

In this section an estimate of the memory usage of all the strategies employed in this paper

is devised to fully appreciate the memory savings achievable through a matrix-free solver pre-

conditioned with p-multigrid. We observe that the memory footprint of the global block matrix

scales as

card(Th) (card(F∂κ) + 1) ((d + 1) dim(Pk
d))2,

where card(F∂κ) is the average number of element’s faces, d + 1 is the number of variables in

d space dimensions and ((d + 1) dim(Pk
d))2 is the number of non-zeros in each matrix block.

While for a matrix-based implementation we assume that both the global system matrix and the

preconditioner are stored in memory, for a matrix-free approach only the preconditioner is stored.

The preconditioner’s memory occupation is carefully estimated:

1. for EWBJ, we consider only the non-zero entries of a block-diagonal matrix.

2. For BJ we consider the storage of ILU(0) factorization applied to the domain-wise portion

of the iteration matrix, which neglects the off diagonal blocks related to faces residing on a

partition boundary.

3. For ASM(q,ILU(0)), we assume that the preconditioner applies the ILU(0) decomposition

to a larger matrix, bigger than the sub-domain matrix of the BJ precondtioner. The exact
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number of additional non-zero blocks is difficult to estimate for general unstructured grids

since it depends on mesh topology, the partitioning strategy, and element types in case of a

hybrid grid. Nevertheless, an estimation can be done assuming a square and cubical domain

discretized by uniformly distributed quadrilateral and hexahedral elements in 2d and 3d,

respectively. Periodic boundary conditions are also assumed at the domain boundaries.

Accordingly the number of non-zero blocks in each sub-domain matrix can be estimated as

follows

(2d+1)

Ne

p
+2dq

(
Ne

p

) d−1
d

+ 2d−1d
q∑

i=1

(i−1)

 − 2d


(Ne

p

) 1
d

+2q


d−1

−2d−1 (d−2)
q∑

i=0

(q−i)


(27)

where q is the number (or depth) of overlapping layers, p is the number of processes,

Ne = card(Th) is the number of mesh elements and card(F∂κ) = 2d. In Eq. (27), the

first term takes into account that each element of a partition, which is widened with the

overlapping elements, contributes to the Jacobian matrix with (1 + 2d) blocks, with 2d the

number of faces of an element, while the second term subtracts the blocks not considered by

the preconditioner, i.e. those due to the connection between elements at the boundary faces

of the augmented partition. For q = {0, 1, 2} we get an estimation of the number of non-zero

blocks corresponding to BJ, ASM(1,ILU(0)) and ASM(2,ILU(0)) preconditioners, respec-

tively. The number of non-zero entries of the global matrix is obtained multiplying the

number of non-zero blocks by the size of each block, i.e., the number of DoFs per element

squared.

Figures 1(a) and 1(b) report the ratio between the estimated number of non-zeros of the precondi-

tioner and the system matrix with respect to the number of sub-domains. For (Ne/p) = 1, corre-

sponding to one element per partition, BJ reduces to EWBJ, which provides a 1/(2d+1) decrease

of the number of non-zeros. On the other hand, for both ASM(1,ILU(0)) and ASM(2,ILU(0)) the

number of non-zero entries grows as (Ne/p) approaches one, which is explained by the growth

of the number of overlapping regions.

In the same manner the memory footprint of p-multigrid preconditioners can be estimated.

We consider as reference the three-level p-multigrid strategy whose specs reads: k = 6, FGM-

RES(MF) outer solver, GMRES(MB)[ASM(1,ILU(0)] smoothing on the coarsest level (k = 1),

GMRES(MF)[EWBJ] on the finest level (k = 6) and GMRES(MB)[EWBJ] on the intermediate
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level (k = 2). We remark that the memory allocation of coarse levels preconditioners has as a

small impact on the total number of non-zeros, due the reduction of block size. For instance,

in three space dimensions, G2 and G1 have 440 and 70 time less non-zeros that the G0 matrix,

respectively. By the analysis of Figure 1, it is clear that the most significant memory savings can

be obtained via the use of single-grid element-wise block Jacobi preconditioning coupled with a

matrix-free implementation of the iterative solver. However, as it will be shown in the remaining

of the paper, the use of such strategy is highly inefficient from the computation time viewpoint

leading to unreasonably large performance penalties with respect to BJ and ASM precondition-

ers. Code profiling on benchmark test cases demonstrated that EWBJ preconditioned GMRES

can be efficiently employed as a fine-level smoother of a multilevel strategy, providing execu-

tion time gains and, at the same time, memory savings which reach the 92% as demonstrated in

Figure 1.
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Figure 1: Estimated relative number of non-zeros (NNZ) of the preconditioner with respect to the non-zeros of the
Jacobian as a function of the number of elements per partition for a two dimensional (d = 2) and three-dimensional case
(d = 3). See text for details.
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3. Numerical results

In this section the performance of the p-multigrid matrix-free preconditioner is compared to

state-of-the-art single-grid strategies in the context of unsteady flow simulations. In all the nu-

merical experiments the matrix-based, block-Jacobi preconditioned GMRES solver is assumed

as the reference solution strategy. Two incompressible flow problems of increasing complexity

are considered: i) the two-dimensional laminar flow around a circular cylinder at Re = 200;

ii) the three-dimensional laminar flow around a sphere at Re = 300.

3.1. Laminar flow past a two-dimensional circular cylinder at Re = 200

The laminar flow around a circular cylinder at Re = 200 is solved with k = 6 on a compu-

tational grid made of 4710 elements with curved edges represented by cubic Lagrange polyno-

mials. The domain extension in non-dimensional units is [−50, 100]×[−50, 50], with reference

length equal to the cylinder diameter. We remark that the grid was deliberately generated with

(a) Velocity magnitude iso-contours

t

C
d

C
l

0 5 10 15 20 25 30 35 40
1

1.1

1.2

1.3

1.4

­1

­0.5

0

0.5

1

1.5

C
d

C
l

(b) Cd and Cl coefficients history

Figure 2: Laminar flow around a circular cylinder at Re = 200.
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a severe refinement in the wake region, as well as large elements at the far-field, in order to

challenge the solution strategy on a stiff space discretization. Dirichlet and Neumann bound-

ary conditions are imposed at the inflow and outflow boundaries, respectively, while symmetry

flow conditions are employed at the top and bottom boundaries. The no-slip Dirichlet boundary

condition is imposed on the cylinder wall. A snapshot of the mesh and the velocity magnitude

contours is shown in Fig. 2(a). Time marching is performed using a non-dimensional fixed time

step ∆t = 0.25, corresponding to 1/20 of the shedding period, which was found adequate to

describe the flow physics and large enough to stress the importance of an efficient solution strat-

egy. Fig. 2(b) reports lift and drag coefficients history. The drag coefficient Cd = 1.335 and the

Strouhal number St = 0.1959 are in good agreement with [39] and references therein.

Performance assessment. The p-multigrid preconditioner approach seeks to minimize the num-

ber of GMRES iterations on the fine grid by means of a full p-multigrid solution strategy. A

fullV-cycle p-multigrid iteration (see Algorithm 3) has many parameters to tune in order to get

the best performance, among the others we mention the following: i) the choice of the smoother

and its preconditioner on each level, ii) the number of smoothing iteration on each level, iii) the

forcing term (controlling the exit condition based on the relative defect drop) of the coarse solver

and its maximum number of iterations. Accordingly the combination of these parameters lead

to a multitude of different configurations that is hard to explore comprehensively. Nevertheless,

we provide some useful indications that can be directly applied to the simulation of realistic flow

problems. In general, with respect to the linear test cases, such as that presented in [36], the use

of a full p-multigrid strategy together with an increased number of smoothing iterations proved

to deal more efficiently with the solution of the incompressible Navier–Stokes equations. The

experiments are devoted to show the benefits of i) the use of a memory saving smoother on the

fine space to reduce the memory footprint and increase the computational efficiency; ii) the use

of a rescaled-inherited approach for the coarse space operators to improve the convergence rates

of the iterative solver. Code profiling is applied for 10 time steps starting from a fully developed

flow solution obtained with the same polynomial degree, same time step size and solving linear

system up to the same tolerance. In practice, the performance of the preconditioners is averaged

on the solution of 40 linear systems. The efficiency of each setting is monitored in parallel, to

assess the behavior of different preconditioners in a realistic setup for this kind of computations.

The runs are performed on a computational node made by two sixteen-core AMD Opteron CPUs.
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First, we report in Table 1 the results obtained using single-grid preconditioners. As expected, the

numerical experiments show a sub-optimal parallel efficiency for the BJ preconditioner, indeed

the average number of linear iterations increases while increasing the number of sub-domains.

The iterations number increase tops at 62% when comparing the simulation on 16 cores against

the serial one. The ASM(1,ILU(0)) preconditioner partially heals the performance degradation

providing a 10% increase of the iterations number at the expenses of a higher memory require-

ment, as explained in Section 2.6. The matrix-based and the matrix-free versions of GMRES

provide a similar number of iterations with a CPU time that is in favour of the former. This can

be explained by the high quadrature cost associated to non-affine mesh elements, see e.g.[40]. In

fact, while Franciolini et al.[9] demonstrated that the residual computation and a matrix-vector

product has similar costs when dealing with high-order discretizations on affine elements, in this

case the numerical quadrature expense has a higher relative cost on residual evaluation. We re-

mark that no attempt was made to optimize numerical quadrature, in particular elements located

far from curved boundaries are still treated as high-order non-affine elements for the sake of sim-

plicity. Even if matrix-free iterations can be further improved in term of efficiency in realistic

applications, this is beyond the scope of the present work. Table 2 allows to evaluate the impact

of the fine smoother preconditioner on the computational efficiency. We report two parameters

of interest, the average number of FGMRES iterations (ITs) and the speed-up with respect to the

best performing single-grid preconditioner, SUMB = TotTime/TotTimeref, where TotTimeref is

the total CPU time of the GMRES(MB)[BJ] method. The specs of the p-multigrid iteration setup

are reported in the top of the table. We also compare the standard-inherited approach (scaling

off ) with the rescaled-inherited one (scaling on).

FGMRES[MGfull] with 3 GMRES(MB)[BJ] smoothing iterations provides a speed-up of about

2 in serial computations with respect to the reference strategy. Although the solver is still faster

Solver GMRES(MB) GMRES(MB) GMRES(MF) GMRES(MF) GMRES(MF)
Prec BJ ASM(1,ILU(0)) EWBJ BJ ASM(1,ILU(0))

nProcs ITs TotTime ITs TotTime ITs TotTime ITs TotTime ITs TotTime
1 123.5 3805 123.5 3805 542.8 36700 112.2 9860 112.2 9860
2 108.0 1756 121.3 1917 538.7 17980 102.4 4547 109.9 4782
4 105.3 859 123.9 982 543.9 9281 103.5 2325 111.2 2426
8 138.0 543 120.4 515 542.2 4615 121.4 1333 111.2 1253
16 199.7 497 134.7 378 554.4 2934 171.3 995 122.8 750

Table 1: Two-dimensional cylinder test case. Single-grid parallel performances, matrix-based and matrix-free implemen-
tations. Comparison of the average number of GMRES iterations (ITs) and the whole elapsed CPU time (solution plus
assembly) TotTime.
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than the reference one, the parallel performance is not satisfactory being an increase in the

number of iterations observed. As expected a better scalability can be obtained with 3 GM-

RES(MB)[ASM(1,ILU(0))] smoothing iterations. The numerical experiment revealed that to

increase the number of iterations from 3 to 8 is mandatory to maintain the smoothing efficiency

of GMRES(MB)[EWBJ], and to achieve a satisfactory performance in parallel. Indeed, despite

being less performing in serial runs, the number of iterations is almost independent from the

number of processes. Moreover, increasing the number of iterations of GMRES(MB)[BJ] does

not pay off in terms of speedup. The number of FGMRES iterations is significantly reduced in

all the cases when considering rescaled-inherited coarse grid operators. However, it can be seen

that the strategy does not always pay off in terms of speedup, as an increased cost for the ma-

trix assembly is required to compute the rescaled stabilization terms. The GMRES(MB)[EWBJ]

smoother, despite being less powerful per-iteration, is competitive with more expensive precon-

ditioners in parallel computations. Interestingly, the EWBJ preconditioner is also the cheapest

from the memory footprint viewpoint.

Table 3 compares the computational efficiency when varying the preconditioner on the coars-

Solver ℓ κℓ ITs Smoother Prec

FGMRES[MGfull]
0,1 6, 2 ∗ GMRES(MB) ‡

2 1 40 GMRES(MB) ASM(1,ILU(0))

scaling off
∗3 ∗3 ∗8 ∗8
‡BJ ‡ASM(1,ILU(0)) ‡BJ ‡EWBJ

nProcs ITs SUMB ITs SUMB ITs SUMB ITs SUMB

1 4.10 2.02 4.10 1.98 2.98 1.76 5.48 1.56
2 4.63 1.67 4.05 1.74 3.10 1.51 5.48 1.36
4 5.73 1.51 4.05 1.74 3.63 1.40 5.63 1.36
8 7.20 1.47 4.35 1.83 3.85 1.48 5.63 1.48

16 8.63 1.80 5.38 2.25 5.05 1.68 5.70 2.01

scaling on
∗3 ∗3 ∗8 ∗8
‡BJ ‡ASM(1,ILU(0)) ‡BJ ‡EWBJ

nProcs ITs SUMB ITs SUMB ITs SUMB ITs SUMB

1 3.43 2.11 3.43 2.11 2.48 1.88 3.50 1.92
2 3.68 1.82 3.55 1.80 2.80 1.58 3.53 1.69
4 4.78 1.64 3.60 1.79 2.55 1.65 3.83 1.64
8 5.13 1.59 3.60 1.83 2.58 1.66 3.68 1.69

16 7.65 1.58 4.10 2.20 2.85 1.96 3.50 2.21

Table 2: Two-dimensional cylinder test case. Effects of the smoother type and the rescaled-inherited coarse spaces on
parallel performance. Comparison of the average number of FGMRES iterations (ITs) and the speed-up (SUMB) of the
p-multigrid preconditioner with respect to the GMRES(MB)[BJ]. The asterisk and the double dagger symbols in the
solver specs row are placeholders for the number of iterations (ITs) and coarse solver type of each column, respectively.
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est level. We fix the GMRES(MB)[EWBJ] smoother on all the other levels, with the idea of

exploiting its performance on parallel runs. The top and bottom of the table include results for

Solver ℓ κℓ ITs Smoother Prec

FGMRES[MGfull]
0 6 8 ∗ EWBJ
1 2 8 GMRES(MB) EWBJ
2 1 40 GMRES(MB) ‡

scaling off
∗GMRES(MB) ∗GMRES(MB) ∗GMRES(MB)

‡BJ ‡ASM(1,ILU(0)) ‡ASM(1,ILU(1))
nProcs ITs SUMB ITs SUMB ITs SUMB

1 5.48 1.56 5.48 1.56 4.73 1.64
2 5.63 1.35 5.48 1.36 4.73 1.43
4 5.43 1.39 5.63 1.36 4.73 1.44
8 5.90 1.46 5.63 1.48 4.75 1.55
16 6.85 1.8 5.70 2.01 4.95 2.13

scaling on
∗GMRES(MB) ∗GMRES(MB) ∗GMRES(MB)

‡BJ ‡ASM(1,ILU(0)) ‡ASM(1,ILU(1))
nProcs ITs SUMB ITs SUMB ITs SUMB

1 3.50 1.92 3.50 1.92 3.15 1.96
2 3.55 1.69 3.53 1.69 3.15 1.72
4 3.35 1.75 3.83 1.64 3.15 1.73
8 3.33 1.79 3.68 1.69 3.15 1.76
16 3.48 2.24 3.50 2.21 3.18 2.27

scaling off
∗GMRES(MF) ∗GMRES(MF) ∗GMRES(MF)

‡BJ ‡ASM(1,ILU(0)) ‡ASM(1,ILU(1))
nProcs SUMB SUMF SUMB SUMF SUMB SUMF

1 0.61 1.59 0.61 1.59 0.69 1.80
2 0.55 1.41 0.56 1.45 0.63 1.63
4 0.55 1.42 0.54 1.41 0.63 1.63
8 0.58 1.43 0.60 1.48 0.70 1.70
16 0.80 1.61 0.96 1.92 1.01 2.03

scaling on
∗GMRES(MF) ∗GMRES(MF) ∗GMRES(MF)

‡ BJ ‡ASM(1,ILU(0)) ‡ASM(1,ILU(1))
nProcs SUMB SUMF SUMB SUMF SUMB SUMF

1 0.89 2.31 0.89 2.30 0.98 2.54
2 0.84 2.18 0.82 2.11 0.9 2.32
4 0.85 2.21 0.80 2.06 0.89 2.30
8 0.91 2.23 0.90 2.20 0.97 2.39
16 1.39 2.80 1.41 2.81 1.53 3.05

Table 3: Two-dimensional cylinder test case. Effects of the coarse level solver on parallel performance. Comparison
of the average number of FGMRES iterations (ITs) and the speed-up of the p-multigrid preconditioner with respect to
the best performing single-grid preconditioner in its matrix-based and matrix-free implementation (SUMB and SUMF,
respectively). The asterisk and the double dagger symbols in the solver specs row are placeholders for the smoother and
coarse solver types of each column, respectively.
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a matrix-based and a matrix-free approach, respectively. Note that only on the finest level the

matrix-vector products are performed matrix-free, both within the outer FGMRES iteration and

the fine GMRES smoother. Indeed, since the coarse levels operators are fairly inexpensive to

store in memory, the moderate memory savings of a matrix-free implementation would not jus-

tify the increased computational costs at low polynomial orders. The results highlight that a

further improvement in computational efficiency is achieved by means of a [ASM(1,ILU(1))]

preconditioner for the coarsest smoother: the number of FGMRES iterations decreases while

maintaining optimal scalability. In addition, the speedup values for the matrix-free approach

increase at large number of cores. We remark that, due to low polynomial degree of the coars-

est level, the additional level of fill of the ILU factorization is not significant from the memory

footprint viewpoint. Interestingly, the increased robustness of the rescaled-inherited p-multigrid

approach results in similar speedups for all the coarse level solver options, but also shows that

with a powerful smoother on the coarsest level the standard inherited approach shows competitive

speedup values as well.

Table 3 reports numerical experiments using the matrix-free solver on the fine space. Since for

this test case the cost-per-iteration of the matrix-free solver is higher than that of a matrix-based,

reducing the number of FGMRES iterations does pay off. Accordingly, the benefits of rescaled-

inherited coarse grid operators are more evident: the total execution time is comparable with

GMRES(MB)[ASM(1,(ILU(0))] and almost three times faster than GMRES(MF)[BJ]. However,

as already mentioned, further optimizations on the quadrature rules would reduce considerably

this penalty.

Table 4 compares three- and four-levels p-multigrid preconditioners. The additional level

significantly reduces the number of FMGRES iterations at the expense of storing a fourth degree

coarse grid operator. The use of a rescaled-inherited approach reduce the number of iterations

further, but the CPU time compares similarly for a matrix-based solution strategy. On the other

hand, the benefits in terms of speedup are most significant in the matrix-free framework, where

solution times dominates assembly times.

To summarize the results, we report in Figure 3 the performance of the algorithm compared to

those of the single grid GMRES(MB)[BJ]. The Figure 3(a) shows the maximum theoretical gain

of the p-multigrid algorithm, expressed as fine space iteration ratio speed-up, i.e. ITsref/ITs, as

a function of the number of computational cores. We point out that the iteration ratio measures
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the algorithmic reduction of the operations spent on the most expensive part of the code, i.e., the

number of GMRES iterations performed with the highest polynomial order of the simulation. As

the number of computational core increases, the iteration ratio grows in all cases, revealing the

superior scalability of the preconditioning strategy. In particular, it can be seen that increasing

the number of levels of the multigrid operator, as well as using the rescaled-inherited approach,

provide a reduction of the overall iterations of the algorithm. We remark that no distinction be-

tween matrix-based and matrix-free is required, as the number of iterations required by GMRES

are identical. Figure 3(b) shows the performance from the CPU time point of view. Trends simi-

lar to that of the iteration ratio can be observed, as the speed-up values increase by increasing the

number of computational cores. In particular, they reach 2 for the matrix-based algorithm with

scaling on and L = 3, while the matrix-free algorithm peaks at 3.5 for the same settings.

In conclusion, it has been demonstrated how the use of cheap preconditioners like EWBJ on

the fine space smoothers of multigrid cycle, coupled with a matrix-free implementation of the

iterative solver, can be used to devise an efficient and memory saving solution strategy. The op-

Solver ℓ κℓ ITs Smoother Prec

FGMRES[MGfull]
0 6 8 ∗ EWBJ

1,...,L-1 ‡ 8 GMRES(MB) EWBJ
L 1 40 GMRES(MB) ASM(1,ILU(1))

scaling off
GMRES(MB)∗ GMRES(MB)∗ GMRES(MF)∗ GMRES(MF)∗

2‡ (L=2) 4,2‡ (L=3) 2‡ (L=2) 4,2‡ (L=3)
nProcs ITs SUMB ITs SUMB SUMB SUMF SUMB SUMF

1 4.73 1.64 3.00 1.62 0.69 1.80 0.88 2.29
2 4.73 1.43 3.00 1.40 0.63 1.63 0.80 2.06
4 4.73 1.44 3.00 1.41 0.63 1.63 0.80 2.05
8 4.75 1.55 3.10 1.51 0.70 1.70 0.82 2.02

16 4.95 2.13 3.33 2.04 1.01 2.03 1.28 2.54

scaling on
GMRES(MB)∗ GMRES(MB)∗ GMRES(MF)∗ GMRES(MF)∗

2‡ (L=2) 4,2‡ (L=3) 2‡ (L=2) 4,2‡ (L=3)
nProcs ITs SUMB ITs SUMB SUMB SUMF SUMB SUMF

1 3.15 1.96 2.00 1.91 0.98 2.54 1.19 3.09
2 3.15 1.72 2.00 1.67 0.90 2.32 1.08 2.80
4 3.15 1.73 2.00 1.68 0.89 2.30 1.09 2.82
8 3.15 1.76 2.00 1.72 0.97 2.39 1.17 2.87

16 3.18 2.27 2.00 2.26 1.53 3.05 1.75 3.50

Table 4: Two-dimensional cylinder test case. Comparison of a three-level and four-level p-multigrid strategy in optimal
settings for matrix-based and matrix-free fine level options in terms of SUMB and SUMF , respectively). The asterisk and
the double dagger symbols in the solver specs row are placeholders for the smoother type and (number, order) of the
coarse levels, respectively.
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timal scalability properties of the EWBJ, which involve local-to-each element operations, can

be conveniently coupled with a more powerful preconditioning strategy on the coarse space

smoothers, for example an Additive Schwarz method, which helps to maintain an optimal so-

lution of the coarse space problem even in the context of highly parallel runs. In the next few

sections, test cases of increasing complexity will be presented to further assess the performance

of the devised strategy. We remark that similar specs to those reported herein will be employed

for the multigrid iteration, which proved to be optimal in the context of the solution of incom-

pressible Navier–Stokes equations.

3.2. Three-dimensional laminar flow past a sphere at Re = 300

As a three-dimensional validation test case we computed the unsteady laminar flow past a

sphere at Re = 300. The solution is characterised by a perfectly periodic behaviour, with the

flow maintaining a plane of symmetry [41, 42, 43, 29]. In our computations, the symmetry

plane was enforced by defining an appropriate boundary condition. The mesh is made of 3560

elements with a bi-quadratic geometrical representation of the wall boundary, see Fig. 4(a). The

computational domain is obtained via extrusion of the wall surface discretization. While the

no-slip condition is set at the wall, velocity inflow and pressure outflow boundary conditions are
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Figure 3: Two-dimensional cylinder test case. Comparison of a three-level and four-level p-multigrid strategies in optimal
settings. Iteration ratio is computed setting numerator (denominator) terms equal to the number of GMRES iterations
with the single grid (p-multilevel) preconditioner of reference, that is ITsref/ITs. The speed-up is defined as above.
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imposed on the spherical farfield located at 50 diameters. A k = 6 representation of the solution

was employed for all computations presented hereafter. We remark that the small number of

mesh elements together with the lack of a refined region in the wake of the sphere reduce the

stiffness of the problem. The parallel performance is evaluated running on the Marconi-A1

HPC platform hosted by CINECA, the Italian supercomputing center. Scalability is assessed

on a single-node base, as the CPU time of the serial computation exceeded the maximum wall-

clock time allowed by CINECA. The number of mesh elements is optimised to ensure that all

the solution strategies fit the memory of a single node (118 GB). Despite the small size of the

problem the following numerical experiments aim at providing reliable indications on the parallel

performance that can be extended to real-size production runs.

The solution is integrated in time with a fixed non-dimensional time step δt = 0.5. The drag

coefficient time history is shown in Fig. 4(b), its mean value reads 0.659, and the Strouhal num-
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Figure 4: Laminar flow around a Sphere at Re = 300. Pressure coefficient iso-contours (top) and drag coefficient history
(bottom).
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ber is St = 0.133, in agreement with the published literature, see [29]. Despite the geometry is

represented with second degree polynomial spaces, the degree of exactness of quadrature rules

does not consider the degree of mappings from reference to physical mesh elements. Accord-

ingly, bilinear forms are exactly integrated only over affine mesh elements, located in general

outside the boundary layer region of the mesh. We numerically verified that, for this test case,

this practice does not compromise accuracy while significantly improving the matrix-free com-

putational time, see [9]. To maximise parallel efficiency, the mesh has been partitioned using the

local two-level partitioning strategy described in [44]. The first-level decomposition is performed

according to the number of compute nodes, and the second-level decomposition acts over each

node-local partition according to the number of CPU-cores per node, such that the extra-node

MPI communications are minimized.

Performance assessment. Table 5 reports the parallel performance of the single-grid matrix-

based and matrix-free solvers running in parallel up to 576 cores, i.e. the domain is decomposed

using 6 elements per partition on average. Increasing the number of sub-domains from 36 to 576

leads to an increased number of GMRES iterations: 42% and 20% up when employing a BJ and

an ASM(1,ILU(0)) preconditioner, respectively. Thanks to the use of quadrature rules suited for

affine meshes, the CPU time of the matrix-free solver is similar to the matrix-based one.

Results reported in Table 6 for a three- and four-levels p-multigrid strategy and the exact same

setup of two-dimensional computations confirm the efficacy of the multigrid preconditioner: the

number of iterations stays the same up to 576 cores and the speedup are maintained in this

largely-parallelized scenario. The use of a matrix-free implementation reduce the CPU time

over its matrix-based counterpart, since the matrix assembly time is reduced as discussed in

Solver GMRES(MB) GMRES(MB) GMRES(MF) GMRES(MF)
Prec BJ ASM(1,ILU(0)) BJ ASM(1,ILU(0))

nProcs ITs TotTime ITs TotTime ITs TotTime ITs TotTime
36 78.5 1448.1 34.5 1245.9 77.1 1365.9 34.7 1220.7
72 86.7 774.0 35.0 675.2 87.0 743.9 35.0 671.9
144 84.9 380.1 38.2 386.7 85.2 370.3 38.2 381.9
288 102.7 226.7 40.2 233.1 102.4 221.3 40.3 228.5
576 111.8 126.0 41.3 150.6 113.6 129.2 41.3 133.8

Table 5: Three dimensional incompressible flow around a sphere. Single-grid parallel performances, matrix-based and
matrix-free implementations. Comparison of the average number of GMRES iterations (ITs) and the whole elapsed CPU
time (solution plus assembly) TotTime. Computations performed on Marconi-A1@CINECA.
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Section 2.3. Moreover, the stabilization scaling provides only slight improvements in terms

of FGMRES iterations, while the speedup values looks almost similar to those obtained using

standard-inheritance, especially for the most parallelized cases. We finally remark that the four-

level p-multigrid preconditioner, with the same settings on the fine/coarse space smoothers, is

almost two times faster than the best single-grid setup.

4. Application to the under-resolved simulation of incompressible turbulent flows

In this section the devised p-multigrid matrix-free implementation is applied to the implicit

LES of two test cases. The first is the transitional flow around a flat plate with a semi-circular

leading edge of diameter d at Red = 3450 and a low level of free-stream turbulence intensity

(Tu = 0.2%). The second is the turbulent flow around the Boeing rudimentary landing gear

test case at Re = 106. Those two test cases are representative of the target applications for the

solution strategy here proposed.

Solver ℓ κℓ ITs Smoother Prec

FGMRES[MGfull]
0 6 8 ∗ EWBJ

1,...,L-1 ‡ 8 GMRES(MB) EWBJ
L 1 40 GMRES(MB) ASM(1,ILU(0))

scaling off

∗GMRES(MB) ∗GMRES(MB) ∗GMRES(MF) ∗GMRES(MF)
‡2 (L=2) ‡4,2 (L=3) ‡2 (L=2) ‡4,2 (L=3)

nProcs ITs SUMB ITs SUMB SUMB SUMF SUMB SUMF

36 4.00 1.29 2.00 1.61 1.37 1.29 2.28 2.15
72 4.00 1.37 2.00 1.68 1.52 1.46 2.38 2.29
144 4.00 1.29 2.00 1.43 1.45 1.41 2.07 2.02
288 4.00 1.37 2.00 1.67 1.56 1.52 2.14 2.09
576 4.00 1.28 2.00 1.55 1.46 1.50 1.55 1.59

scaling on
GMRES(MB)∗ ∗GMRES(MB) ∗GMRES(MF) ∗GMRES(MF)
‡2 (L=2) ‡4,2 (L=3) ‡2 (L=2) ‡4,2 (L=3)

nProcs ITs SUMB ITs SUMB SUMB SUMF SUMB SUMF

36 3.0 1.43 2.00 1.51 1.53 1.44 2.09 1.97
72 3.0 1.52 2.00 1.61 1.62 1.56 2.18 2.09
144 3.0 1.36 2.00 1.50 1.55 1.51 1.93 1.88
288 3.0 1.56 2.00 1.60 1.71 1.67 2.02 1.97
576 3.0 1.45 2.00 1.43 1.63 1.67 1.73 1.78

Table 6: Three dimensional incompressible flow around a Sphere. Efficiency of a three and four level p-multigrid strategy
varying the fine level smoother. Comparison of the average number of FGMRES iterations (ITs) and the speed-up of the
p-multigrid preconditioner with respect to the best performing single-grid preconditioner in its matrix-based and matrix-
free implementation (SUMBand SUMF,respectively). The asterisk and the double dagger symbols in the solver specs row
are placeholders for the smoother and coarse solver types of each column, respectively. Computations performed on
Marconi-A1@CINECA.
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4.1. ERCOFTAC T3L1 test case

This test case, named T3L1, is part of the ERCOFTAC test case suite. The solution exhibits at

leading edge a laminar separation bubble and, downstream the transition, an attached turbulent

boundary layer. Those complex flow features are perfectly suited to evaluate the efficiency of

the solver and highlight the advantages of using a dG-based ILES approach. ILES naturally

resolves all the flow scales (in a DNS-fashion) if the numerical resolution is enough to do so,

while the numerical dissipation plays the role of a sub-grid scale model for the spatially under-

resolved regions of the domain. In this test case, the laminar region is fully resolved, while in the

turbulent region the dissipation of the numerical scheme dumps the under-resolved scales. We

remark that in all the computations the same settings of Table 6 are employed for the p-multigrid

iteration.

The simulations were performed in parallel using 540 cores on a hybrid mesh of 38320 el-

ements with curved edges. The unstructured grid is strongly coarsened moving away from the

plate, while a structured-like boundary layer is used at the wall. The first cell height is 10−2d,

with d the leading edge diameter, and the mesh is refined near the reattachment region, where

the minimum dimension along x axis is 2 · 10−2d, see Fig. 5. The domain extension on the x − y

plane, with origin located in the leading edge semi-circumference center, is taken from [45], i.e.,

28d × 17d. The two-dimensional domain is extruded using 10 elements along the span-wise

direction z for a length of 2d, as in [46]. To our best knowledge, only those two works report a

LES simulation of this ERCOFTAC test case. In both the cases, the numerical method was based

on a standard second-order scheme and a dynamic subgrid scale model. On the other hand, we

here employ sixth-order polynomials, i.e., seventh-order accurate space discretizations. A direct

Figure 5: T3L1 test case. Near-wall detail of the computational grid.
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comparison of the present computations with previously published works in terms of DoFs is not

trivial due to the differences of the computational domains. In [46] the DoFs count per variable

is on the order of 1.88 · 106 and the domain extension in the x − y plane is 1.9 times smaller. In

[45] the DoFs count is on the order of 4.39 ·106 and the domain is 4 times larger in the span-wise

direction. The result with the lowest resolution presented in this paper has about 1.39 · 106 DOFs

and takes advantage of the unstructured nature of the grid by increasing the mesh density during

the turbulent transition and reattachment, that is for x/d ⪆ 4.5 up to the outflow.

Physical discussion. This type of flow problem is reported to be very sensitive to the free-stream

turbulence at the inlet (Tu). The free-stream flow was carefully manipulated to reproduce those

reported by ERCOFTAC as well as previous numerical computations [46, 45]. In those works, a

white-noise random perturbation was added at the inflow velocity to mimic the low experimental

turbulence level, i.e., Tu < 0.2%. In the present work, due to an aggressive mesh coarsening in

the far-field regions, the generation of a free-stream turbulence at inlet is unfeasible. In fact, the

coarse spatial discretization at far-field would rapidly damp any random perturbation introduced

upstream. Accordingly, the turbulent fluctuations were synthetically injected via a spatially-

supported random forcing term in those regions of the domain where the mesh density is enough

not to dissipate small scales. The random discrete forcing vector fh is applied as a source term of

the discrete momentum equations (6) and computed by multiplying a randomly generated three-

dimensional discrete vector rh to a function of the spatial coordinates x, y, z. This function is

chosen to be a Gaussian distribution in the x direction and homogeneous in y−z such that

sh =

∫
Ω

vh · fhdΩ =
∫
Ω

vh ·

Ae
−

(
x1−x1

2µ

)2 rhdΩ (28)

where A, x1 and µ are, respectively, the amplitude coefficient, the location of the forcing plane,

and the amplitude of the Gaussian support. We remark that the vector component is normalized

such that ∥rh∥ = 1. The random vector is computed at each Gauss-quadrature point separately

during the residual assembly. Since this vector changes not only in space, but also in time, it has

been verified that the results are insensitive with respect to temporal refinements. The Gaussian

function was centered in x1/d = −3, and the constants A, µ were adjusted, via a trial and error

approach, to meet the experimental Tu. We avoid a fine control algorithm of the turbulent length-

scale since the reattachment length is pretty insensitive to this value, see [47, 48, 49]. In the

present configuration the expected turbulence intensity is met setting A = 0.06 and µ = 0.01.
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We remark that perturbing the velocity field through a forcing term in the momentum equations

guarantees a divergence-free perturbation.

(a) Tu = 0%

(b) Tu = 0.2%

Figure 6: T3L1 test case, k = 6 solutions for different Tu levels. λ2 = −1 iso-contour and periodic plane coloured by the
streamwise velocity.

Fig. 6 depicts the instantaneous flow fields computed with Tu = 0% and Tu = 0.2%. In

both cases, the quasi two-dimensional Kelvin-Helmholtz instabilities in the shear-layer region

above the separation bubble and their convection downstream are observed. As expected, the

low free-stream turbulence intensity value promotes the instability of the quasi two-dimensional

structures arising from the upstream flow separation. For both the conditions, hairpin vortices

developing after flow reattachment and the breakdown to turbulence are similar. Distortion along

the spanwise direction is anticipated upstream in the Tu = 0.2% case.

As reported in previous studies, the bubble length is found to be very sensitive to the inlet tur-

bulence intensity, see for example [50]. In particular, when increasing the Tu from 0% to 0.2%

the bubble length reduces from xR/d = 3.90 to 2.69, as shown by the statistically-converged
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time and spanwise averaged velocity contours in Figs. 7 and 8. The length predicted for the

Tu = 0.2% case is in a better agreement with the experimental data (l/d = 2.75) than other

numerical computations [46, 45] (2.59 and 3.00, respectively). Moreover, we verified by low-

ering the polynomial degree of the dG discretization that our statistical average xR/d is almost

converged with respect to the spatial resolution: for k = 5 and k = 4 we obtain 2.70 and 2.73,

respectively. Convergence of the statistics is also confirmed by polynomial degree independence

observed for the skin friction coefficients, see Fig. 9. As opposite to the behavior documented in

[46], no hysteresis effects are observed in our computations. Accordingly, if the random source

term generating small turbulent perturbations is suddenly suppressed in the fully developed flow

field at Tu = 0.2%, the solution of a zero free-stream turbulence case is quickly recovered.

Figure 7: T3L1 test case. Effect of the Tu level. Average velocity magnitude iso-contours, k = 6 solutions. Top:
Tu = 0.0%; Bottom: Tu = 0.2%.

Figure 8: T3L1 test case. Effect of the Tu level. Turbulent kinetic energy iso-contours, k = 6 solutions. Top: Tu = 0.0%;
Bottom: Tu = 0.2%.

Figure 10 compares velocity profiles with the experimental ones. We consider the mean stream-
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Figure 9: T3L1 test case. Effect of the Tu level on the skin friction coefficient c f .

wise velocity <u>, and the velocity fluctuation (or velocity RMS), <u′u′>, as a function of the

normal direction for different stations. Velocity is normalized by the local maximum velocity

umax, computed independently for each of the stations. The random forcing efficacy is demon-

strated by the very good agreement with experimental data close to the plate stagnation point.

We point out that for x1/l < 1.64 improvements with respect to previous computational investi-

gations are difficult to evaluate. As opposite, for x1/l > 1.64 our results still compare favourably

with the experimental data, while the matching is less evident in [45]. We stress that our velocity

fluctuations compare favourably with the experiments up to 3.45l, which was omitted in previ-

ous works [46, 45], see Figures 10 and 11. This supports the claim that present computations

provide a larger fully resolved region, for all the polynomial degrees here considered. Note that

some jumps at inter-element boundaries are still noticeable, especially for k = 4. Fig. 12 reports

the computed averaged velocity profiles in wall units, for different stations located downstream

to the reattachment region. For x/l ≥ 3.45 the profile approaches the turbulent law of the wall,

showing some discrepancies with respect to the equilibrium boundary layer in the outer layer.

For the sake of comparison, the zero pressure gradient flat plate DNS result at Reθ = 300 of

Spalart [51] is reported together with the numerical solution at x/l = 4.55, which shows almost

the same Reθ. We remark the very good agreement between the experimental and numerical data

at station x/l = 3.45, corresponding to Reθ ≈ 270.

Performance assessment. Table 7 reports the computational performances of the different so-

lution strategies obtained for a dG approximation with k = 6, the same polynomial degree of

reference employed in previous sections. The table aims at comparing the performance of the

solution strategies accounting for CPU time, memory footprint as well as average number of GM-
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Figure 10: T3L1 test case, k = 6 solution for Tu = 0.2%. Time- and spanwise-averaged velocity profiles in comparison
with experimental data [52]. Mean (top) and RMS (bottom) flow velocity. Abscissas are non-dimensionalized using the
experimental reattachment length l/d = 2.75.
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RES iterations. The time step size of the third-order accurate linearly-implicit Rosenbrock-type

time integration scheme was 16 and 8 times larger than those used in [45] and [46], respectively.

We point out that, as the number of curved elements small when compared to the number of

affine elements, the degrees of exactness of quadrature rules neglects the second degree geomet-

rical representation of cells close to leading edge. Since the boundary layer is still laminar at

the leading edge, this under-integration does not affect the stability of the scheme as well as the

accuracy of the numerical results.

Comparing the matrix-based (GMRES(MB)[BJ]) to the matrix-free solver (GM-

RES(MF)[BJ]), we observe the same computational efficiency but 40% less memory usage. On

the other hand, the use of Additive Schwarz preconditioned GMRES (GMRES[ASM(1,ILU(0))])

decreases the overall parallel efficiency of the method: the CPU time increases by the 11% and

the memory requirements raises by 60%, due to the increased number of overlapping block el-

ements employed. The p-multigrid precondioned solver specs are as follows: FGMRES(MB

or MF) as outer solver, a full p-multigrid interation with L = 3, κℓ = 6, 2, 1, GMRES(MB or

MF)[EWBJ] smoother for ℓ = 0 (8 iterations), GMRES(MB)[EWBJ] smoother for ℓ = 1 (8

iterations) and GMRES(MB)[ASM(1,ILU(0))] smoother on the coarsest level (ℓ = 2, 40 itera-

tions). Note that for the finest level outer solver and smoother we consider both matrix-based

and matrix-free implementations for the sake of comparison. The computational efficiency of

the method improves considerably with respect to the reference (first column of Tab. 7): i) in a

matrix-based framework a 50% decrease of the CPU time is observed and the memory require-

ments reduce by 35%, ii) in a matrix-free framework the CPU times gains are unaltered and the

memory savings reach 85%. Such significant memory footprint reductions are mainly due the

finest level strategy: only a block diagonal matrix is allocated and a small number of Krylov sub-

spaces is employed for the GMRES algorithm. We remark that in this case the actual memory

Solver GMRES(MB) GMRES(MB) GMRES(MF) FGMRES(MB) FGMRES(MF) FGMRES(MF)
Prec BJ ASM(1,ILU(0)) BJ MGfull MGfull MGfull (LAG=3)

CPU Ratio 1 1.11 0.95 0.50 0.47 0.31
Memory Ratio 1 1.6 0.6 0.65 0.15 0.15
ITs 115 72 115 3.0 3.0 3.31

Table 7: Performance comparison of the solver on the T3L1 test case. Computational time, total memory footprint non-
dimensionalized with the GMRES(MB)[BJ] solver, and average number of GMRES iterations per time step, for the BJ,
ASM(1,ILU(0)) and p-multigrid preconditioners (see text for settings details). Results obtained on 540 Intel Xeon CPUs
of Marconi-A1@CINECA.
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footprint has been computed through the PETSc library, and it is in line with the values that can

be estimated a-priori using the model of Section 2.6.

As a further optimization of the matrix-free approach we consider the possibility to lag the

computation of the system matrix employed for preconditioning purposes, this means that the

preconditioner is frozen for several time steps. Clearly this strategy reduces assembly times

but degrades convergence rates if the discrepancy between the matrix and the preconditioner

gets too severe. In the present computation optimal performance are achieved by lagging the

operators evaluation for 3 time steps. By doing so, the CPU time is further reduced to the

0.31 of the baseline, see Tab. 7, which corresponds to a speed-up of 3.22. As a side effect,

the average number of GMRES iterations slightly increases, from 3.0 to 3.31, due to a loss of

efficiency of the multigrid preconditioner. We remark that, in a matrix-free framework, lagging

the preconditioners only acts on the coarse space multigrid operators, while the finest space still

gets updated thanks to the matrix-free approach.

4.2. Boeing rudimentary landing gear test case

The final validation case reported in this work deals with the implicit LES of the incom-

pressible flow around the Boeing rudimentary landing gear (RLG). The purpose of the test is to

demonstrate the applicability of the solution strategies proposed in this work within an industri-

ally relevant test case.

The RLG was designed by Spalart et al. [53], and experimentally studied in [54], to become a

benchmark for testing turbulence modelling approaches. The test case was also included within

the test case suite of the ATAAC EU-funded project [55]. The flow conditions involve a Reynolds

number of 106, based on the freestream velocity V∞ = 40 m/s and on the wheel diameter D =

0.406 m. The Mach number of the experiments was M = 0.12, which represents almost an

incompressible flow problem. While the structural elements of the landing gear are rectangular to

fix the location of the separation points, the boundary layers on the wheels are tripped, see [53].

The structure of the unsteady flow around the landing gear is mainly characterized by large

separated and recirculating regions on the wheels and axles, as well as by the front-rear wheel

interaction, which make the use of unsteady scale-resolving simulation mandatory.

The computational domain is delimited by one symmetry plane, three inviscid walls, one in-

flow, one outflow, and the landing gear wall surface according to [55]. A snapshot of the grid

showing the wall surface (red), the symmetry plane discretization (black) and an internal slice
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(blue) is reported in Figure 13. The mesh employed takes advantage of the symmetry of the

problem and it discretizes only the half of the domain. The grid was made by 115 · 103 hexahe-

dral elements with second-order geometrical representation of the curved boundaries. It shows a

severe wall refinement to accommodate a suitable wall resolution given the high Reynolds num-

ber of the case. The first cell height is δy = 6.054 · 10−5D, which provides an equivalent wall

normal resolution of 1.851 · 10−5, obtained by dividing for (nv)1/3, with nv the number of DoFs

per element. Exploiting the maximum value of the skin friction coefficient over the entire wall

boundary obtained during the post-processing phase, the grid allows a maximum wall normal

resolution of y+ = 2.8. The estimated minimum aspect ratio of the cell is of the order of 104,

which increases considerably the condition number of the iteration matrix.

The solution has been obtained by using k = 4 polynomials, providing a total of 4.025 · 106

degrees of freedom, while the four-stage, order-three ROSI2PW scheme was employed for time

integration. Using as reference quantities the free stream velocity and the wheel diameter, the

non-dimensional time step size was δt = 0.001. To compute the average fields, the solution was

advanced in time for roughly 50 convective times, some of them performed using a lower-order

space discretization. The average process lasted roughly T = 23 convective times, which may be

not enough to have converged first-order statistics. However, it has been verified that the average

quantities did not change sensibly from T > 17.5.

Figure 13: Boeing rudimentary landing gear test case. Details of the multiblock structured grid provided by DLR under
the ATAAC and TILDA European projects.
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Figure 14: RLG test case at Re = 106. Incompressible flow solution using k = 4 polynomials. λ2 iso-contour coloured
by stream-wise velocity magnitude. Front view (left) and rear view (right).

Figure 15: RLG test case at Re = 106. Incompressible flow solution using k = 4 polynomials. Mean pressure coefficient
Cp contours on the wall surface. Front view (left) and rear view (right).

Physical discussion. Figure 14 shows the features of the flow field through the instantaneous λ2

iso-contour plot coloured by the stream-wise velocity magnitude. The shape of the iso-contours

suggests that the flow is mainly attached to the wheels, although a very small laminar separation

can be observed on the fore side of the wheel.

The averaged fields in terms of pressure coefficient Cp, the root mean square value of the pres-

sure coefficient CRMS
p on the landing gear are reported in Figure 15, 16. A qualitative agreement

with the surface plots reported in [53, 56], obtained through a hybrid RANS/LES approach, can
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Figure 16: RLG test case at Re = 106. Incompressible flow solution using k = 4 polynomials. Pressure coefficient RMS,
CRMS

p contours on the wall surface. Front view (left) and rear view (right).

Figure 17: RLG test case at Re = 106. Incompressible flow solution using k = 4 polynomials. Mean skin friction
coefficient C f contours on the wall surface. Front view (left) and rear view (right).

be observed especially as regards the front views. On the other hand, the rear view highlights the

presence of pressure oscillations that suggest a very coarse space resolution. Those oscillations

are even more evident if first order statistics (e.g. CRMS
p ) or the skin friction coefficient (which

involve state derivatives) are considered. Figure 17 reports the surface plot of the skin fric-

tion coefficient C f = 2τw/ρV2
∞, which looks qualitatively similar to those reported in previous

numerical simulations [53, 56].
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Figure 18: RLG test case at Re = 106. Incompressible flow solution using k = 4 polynomials. Average wall streamline
path. Front view (left) and rear view (right).

Figure 18 show the streamline patterns on the wheels. The patterns show the bifurcation line of

separation and reattachment on the front and rear wheels as reported in [56]. However, the sim-

ulation shows on both sides of the wheels a region with separated flow and reversed streamline

patterns. Such a region seems to be different to that reported by the experiments [54] as well as

previous numerical simulations. No transition tripping was employed in the current simulation,

differently to what has been done for the experiments and previous numerical simulations based

on RANS and hybrid RANS/LES modeling.

Figure 19 reports the average pressure coefficient Cp and its root mean square value CRMS
p on

the mid-line of the wheels, versus the azimuthal angle θ, in comparison with experimental data

from NAL [54]. While the pressure coefficient compare favourably with experimental data, its

root mean square value shows a more oscillatory behaviour, originating from low spatial resolu-

tion and possibly a too short averaging time. However, the locations of the peaks of fluctuation

as well as its value is pretty well captured.

Performance assessment. Linear systems arising from the time integration were solved using

FGMRES preconditioned with a p-multigrid strategy with similar settings to that of Table 6,

employing an additive Schwarz preconditioned smoothers on the coarsest level of the multigrid

iteration, and an element-wise block Jacobi method on the other levels to maximise the scalability

of the algorithm. Despite working with an average of 19 elements per partition in such a complex
43



θ

C
p

0 60 120 180 240 300 360
­1.5

­1

­0.5

0

0.5

1

1.5

(a) Cp, front wheel

θ

C
p

0 60 120 180 240 300 360

­1.5

­1

­0.5

0

0.5

1

(b) Cp, rear wheel

θ

C
pR

M
S

0 60 120 180 240 300 360
0

0.1

0.2

0.3

0.4

0.5

(c) CRMS
p , front wheel

θ

C
pR

M
S

0 60 120 180 240 300 360
0

0.1

0.2

0.3

0.4

0.5

(d) CRMS
p , rear wheel

Figure 19: RLG test case at Re = 106. Incompressible flow solution using k = 4 polynomials. Average pressure
coefficient Cp and RMS CRMS

p distribution on the mid-line of the fore and back wheels versus the azimuthal angle θ.
Numerical simulations (red dots) compared to experimental data (black solid lines).

test case, the iterative solver converged using an average of 3.5 iterations per stage, confirming

the efficacy of this preconditioning approach. The present computation has been performed on

roughly 6 · 103 cores of the Marconi A1 cluster hosted by CINECA, using a total wall clock time

of 94 hours. The average wall time per convective time unit was roughly 4 hours.
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5. Conclusion

The paper presents a p-multigrid preconditioner strategy applied to the solution of linear sys-

tem arising from linearly-implicit Rosenbrock-type time discretizations. The algorithm relies

on a matrix-free implementation of both the outer FGMRES solver as well as the finest level

smoother, while matrix-based GMRES smoothers are employed on coarse levels. Coarse opera-

tors of lower polynomial degree are built using a subspace inherited approach.

The performance of the algorithm has been evaluated on test cases of growing complexity.

First, we deal with unsteady laminar flows, i.e., the flow around a two-dimensional cylinder

and a sphere, showing that the p-multigrid preconditioned solver can be used to achieve optimal

convergence rates, outperforming standard single-grid preconditioned iterative solvers from a

CPU time viewpoint in practical parallel computations. In particular, we consider and parallel

computations (up to 576 cores and 6 elements per partition), with speed-ups roughly ranging

from 1.5 to 3.5. Finally, we perform ILES of the incompressible turbulent flow over a rounded-

leading edge plate with different free-stream turbulent intensities. High-order accurate k = 6

solutions are compared with published numerical results and wind tunnel experiments. The

solver strategy is profiled and compared with state-of-the-art single-grid solvers running on large

HPC facilities. We show that, if a block-diagonal preconditioner is employed on the finest level,

the algorithm reduces the memory footprint of the solver of about 92% of the standard matrix-

based implementation. Interestingly, besides the memory savings, the p-multigrid preconditioned

FGMRES solver is also three times faster than the best performing single-grid solver. As proof

of concept, we report the ILES of the Boeing rudimentary landing gear at Re = 106. Increasing

the complexity of the problems has not required tuning of p-multigrid parameters confirming the

robustness of the proposed approach.

Future works involve the implementation of an adaptive strategy for the choice of the quadra-

ture degree of exactness, which can be adapted in view of the actual amount of curvature of

mesh faces, in order to optimise the computation of the residuals vector and thus the overall

performance of the matrix-free algorithm.
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Appendix A. ROSI2PW scheme

We here report the coefficients of the ROSI2PW scheme [31] used for the time integration of

the set of incompressible Navier–Stokes equations. Coefficients m̂, reported for completeness,

are those of the embedded ROSI2PW Runge–Kutta scheme.

γ = 4.3586652150845900E − 01
a21 = 8.7173304301691801E − 01 c21 = −8.7173304301691801E − 01
a31 = −7.9937335839852708E − 01 c31 = 3.0647867418622479E + 00
a32 = −7.9937335839852708E − 01 c32 = 3.0647867418622479E + 00
a41 = 7.0849664917601007E − 01 c41 = −1.0424832458800504E − 01
a42 = 3.1746327955312481E − 01 c42 = −3.1746327955312481E − 01
a43 = −2.5959928729134892E − 02 c43 = −1.4154917367329144E − 02
m1 = 6.0424832458800504E − 01 m̂1 = 4.4315753191688778E − 01
m2 = −3.6210810811598324E − 32 m̂2 = 4.4315753191688778E − 01
m3 = −4.0114846096464034E − 02 m̂3 = 0.0000000000000000E + 00
m4 = 4.3586652150845900E − 01 m̂4 = 1.1368493616622447E − 01

Table A.8: ROSI2PW scheme coefficients from [31].
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