Motivated by the always increasing need for safety, availability, and reliability of vehicles, the objective of this thesis is to provide novel methods to perform both fault diagnosis and fault tolerant control for marine and aerial overactuated unmanned vehicles. In particular, actuator faults are considered, as they represent a common class of faults, and they entail severe consequences if not tackled in time. In order to reach the goal, active methods are developed, i.e., active fault diagnosis and active fault tolerant control, because of their superior capability to cope with faults of arbitrary magnitude. The first step is to estimate the fault magnitude. For this reason, several fault diagnosis algorithms are presented in this thesis to deal with two classes of vehicles, namely, remotely operated vehicles and multirotor drones. Such methods require inertial measurements only, thus they are well suited for vehicles with a limited amount of onboard sensors. Given a set of measured variables, input fault estimation becomes more challenging as the number of actuators increases. Overactuated vehicles are characterized by redundant actuators, thus the task is not trivial: active fault diagnosis makes possible to distinguish between various kinds of faults by injecting a test signal to the control inputs. Moreover, several actuators show a nonlinear behaviour, hence classical linear tools do not achieve satisfactory performances, and specific solutions must be designed. Secondly, provided that a suitable fault estimation is available thanks to a fault detection and diagnosis algorithm, this thesis proposes to exploit control allocation algorithms to manage faults, while satisfying input constraints and minimizing a cost function. In this active fault tolerant scheme, control allocation plays a central role, as it allows to cope with multiplicative faults without the need of redesigning the (possibly nonlinear) control law, and also makes possible to manage actuator redundancy dynamically. The method consists in formulating the control allocation problem as an optimization problem, and then recasting it to a class of optimization problems where efficient solvers are available in the literature, i.e., convex ones. Such fault tolerant methods are then applied to cope with actuator faults in remotely operated vehicles, whether they are equipped with fixed thrusters or azimuth (i.e., orientable) thrusters, and in multirotor drones, both in the case of fixed pitch and variable pitch propellers. Simulation results which mimic real world scenarios illustrate the effectiveness of the methods, in terms of fault tolerance, reduced tracking error, and improved energy consumption.
Motivato dalla crescente richiesta di sicurezza, disponibilità e affidabilità nei veicoli, lo scopo della presente tesi è sviluppare nuovi metodi per effettuare sia la diagnosi dei guasti che il controllo tollerante ai guasti per veicoli sovrattuati. In particolare, si considerano i guasti degli attuatori, poiché essi rappresentano una classe comune di guasti ed hanno conseguenze critiche se non affrontati tempestivamente. Per raggiungere l'obiettivo, si propongono metodi attivi, ovvero la diagnosi guasti attiva ed il controllo attivo tollerante ai guasti, poiché essi presentano migliori capacità di gestire guasti di severità arbitraria. Il primo passo consiste nel quantificare l'ampiezza del guasto. Per questo motivo, in questa tesi si illustrano diversi algoritmi per la diagnosi dei guasti applicata a due categorie di veicoli, in particolare i veicoli sottomarini a comando remoto ed i droni multirotore. I metodi sviluppati richiedono l'utilizzo di sole misure inerziali, quindi sono facilmente applicabili anche su veicoli con limitate disponibilità sensoriali. Dato un insieme di variabili misurate, la stima dei guasti dell'ingresso diventa più complessa all'aumentare del numero di attuatori. D'altronde, i veicoli sovrattuati sono caratterizzati dalla ridondanza di attuatori, quindi il compito non è banale: la diagnosi dei guasti attiva permette di distinguere tra diversi tipi di guasto, tramite l'introduzione di segnali opportuni nei canali di ingresso. Inoltre, poiché molti attuatori hanno un comportamento non lineare, i metodi lineari classici non raggiungono prestazioni soddisfacenti, quindi è necessario sviluppare soluzioni specifiche. Come secondo passo, supposto che una stima del guasto sia disponibile grazie al predetto algoritmo di rilevamento e diagnosi dei guasti, in questa tesi si propone di sfruttare gli algoritmi di allocazione dello sforzo di controllo per gestire i guasti, oltre che per soddisfare i vincoli degli ingressi e minimizzare una funzione di costo. L'algoritmo di allocazione ha un ruolo chiave in tale schema di controllo, in quanto permette di affrontare i guasti moltiplicativi senza il bisogno di riformulare la legge di controllo (tipicamente nonlineare); inoltre, esso permette di gestire la ridondanza in maniera dinamica. Il metoto proposto consiste nel formulare il problema di allocazione come un problema di ottimizzazione, per poi farlo ricadere in una classe di problemi per la quale sono disponibili in letteratura degli algoritmi di soluzione efficienti, come ad esempio avviene per i problemi convessi. Lo schema di controllo tollerante ai guasti discusso è poi applicato ai veicoli sottomarini a comando remoto, siano essi equipaggiati con propulsori fissi o azimutali (ossia orientabili), e ai droni multirotore, sia nel caso di eliche ad angolo di incidenza fisso, sia nel caso di angolo di incidenza variabile. I risultati forniti dalle simulazioni, realizzate in condizioni realistiche, mostrano l'efficacia del metodo, in termini di tolleranza ai guasti, di riduzione dell'errore di inseguimento della traiettoria e di miglioramento del consumo energetico.
Active Fault Tolerant Control for Overactuated Unmanned Vehicles / Felicetti, Riccardo. - (2021 May 26).
Active Fault Tolerant Control for Overactuated Unmanned Vehicles
FELICETTI, Riccardo
2021-05-26
Abstract
Motivated by the always increasing need for safety, availability, and reliability of vehicles, the objective of this thesis is to provide novel methods to perform both fault diagnosis and fault tolerant control for marine and aerial overactuated unmanned vehicles. In particular, actuator faults are considered, as they represent a common class of faults, and they entail severe consequences if not tackled in time. In order to reach the goal, active methods are developed, i.e., active fault diagnosis and active fault tolerant control, because of their superior capability to cope with faults of arbitrary magnitude. The first step is to estimate the fault magnitude. For this reason, several fault diagnosis algorithms are presented in this thesis to deal with two classes of vehicles, namely, remotely operated vehicles and multirotor drones. Such methods require inertial measurements only, thus they are well suited for vehicles with a limited amount of onboard sensors. Given a set of measured variables, input fault estimation becomes more challenging as the number of actuators increases. Overactuated vehicles are characterized by redundant actuators, thus the task is not trivial: active fault diagnosis makes possible to distinguish between various kinds of faults by injecting a test signal to the control inputs. Moreover, several actuators show a nonlinear behaviour, hence classical linear tools do not achieve satisfactory performances, and specific solutions must be designed. Secondly, provided that a suitable fault estimation is available thanks to a fault detection and diagnosis algorithm, this thesis proposes to exploit control allocation algorithms to manage faults, while satisfying input constraints and minimizing a cost function. In this active fault tolerant scheme, control allocation plays a central role, as it allows to cope with multiplicative faults without the need of redesigning the (possibly nonlinear) control law, and also makes possible to manage actuator redundancy dynamically. The method consists in formulating the control allocation problem as an optimization problem, and then recasting it to a class of optimization problems where efficient solvers are available in the literature, i.e., convex ones. Such fault tolerant methods are then applied to cope with actuator faults in remotely operated vehicles, whether they are equipped with fixed thrusters or azimuth (i.e., orientable) thrusters, and in multirotor drones, both in the case of fixed pitch and variable pitch propellers. Simulation results which mimic real world scenarios illustrate the effectiveness of the methods, in terms of fault tolerance, reduced tracking error, and improved energy consumption.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.