Computed tomography coronary angiography (CTCA) has become a cornerstone in the diagnostic process of the heart disease. Although the cardiac imaging with interventional procedures is responsible for approximately 40% of the cumulative effective dose in medical imaging, a relevant radiation dose reduction over the last decade was obtained, with the beginning of the sub-mSv era in CTCA. The main technical basis to obtain a radiation dose reduction in CTCA is the use of a low tube voltage, the adoption of a prospective electrocardiogram-triggering spiral protocol and the application of the tube current modulation with the iterative reconstruction technique. Nevertheless, CTCA examinations are characterized by a wide range of radiation doses between different radiology departments. Moreover, the dose exposure in CTCA is extremely important because the benefit–risk calculus in comparison with other modalities also depends on it. Finally, because anatomical evaluation not adequately predicts the hemodynamic relevance of coronary stenosis, a low radiation dose in routine CTCA would allow the greatest use of the myocardial CT perfusion, fractional flow reserve-CT, dual-energy CT and artificial intelligence, to shift focus from morphological assessment to a comprehensive morphological and functional evaluation of the stenosis. Therefore, the aim of this work is to summarize the correct use of the technical basis in order that CTCA becomes an established examination for assessment of the coronary artery disease with low radiation dose.

The sub-millisievert era in CTCA: the technical basis of the new radiation dose approach

Schicchi N.;Fogante M.;Palumbo P.;Agliata G.;Esposto Pirani P.;Giovagnoni A.
2020

Abstract

Computed tomography coronary angiography (CTCA) has become a cornerstone in the diagnostic process of the heart disease. Although the cardiac imaging with interventional procedures is responsible for approximately 40% of the cumulative effective dose in medical imaging, a relevant radiation dose reduction over the last decade was obtained, with the beginning of the sub-mSv era in CTCA. The main technical basis to obtain a radiation dose reduction in CTCA is the use of a low tube voltage, the adoption of a prospective electrocardiogram-triggering spiral protocol and the application of the tube current modulation with the iterative reconstruction technique. Nevertheless, CTCA examinations are characterized by a wide range of radiation doses between different radiology departments. Moreover, the dose exposure in CTCA is extremely important because the benefit–risk calculus in comparison with other modalities also depends on it. Finally, because anatomical evaluation not adequately predicts the hemodynamic relevance of coronary stenosis, a low radiation dose in routine CTCA would allow the greatest use of the myocardial CT perfusion, fractional flow reserve-CT, dual-energy CT and artificial intelligence, to shift focus from morphological assessment to a comprehensive morphological and functional evaluation of the stenosis. Therefore, the aim of this work is to summarize the correct use of the technical basis in order that CTCA becomes an established examination for assessment of the coronary artery disease with low radiation dose.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11566/288531
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact