We consider the following class of fractional problems with unbalanced growth: {(−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=f(u)in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0in RN, where ε>0 is a small parameter, s∈(0,1), [Formula presented], (−Δ)ts (with t∈{p,q}) is the fractional t-Laplacian operator, V:RN→R is a continuous potential satisfying local conditions, and f:R→R is a continuous nonlinearity with subcritical growth. Applying suitable variational and topological arguments, we obtain multiple positive solutions for ε>0 sufficiently small as well as related concentration properties, in relationship with the set where the potential V attains its minimum.
Titolo: | Fractional double-phase patterns: concentration and multiplicity of solutions |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Abstract: | We consider the following class of fractional problems with unbalanced growth: {(−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=f(u)in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0in RN, where ε>0 is a small parameter, s∈(0,1), [Formula presented], (−Δ)ts (with t∈{p,q}) is the fractional t-Laplacian operator, V:RN→R is a continuous potential satisfying local conditions, and f:R→R is a continuous nonlinearity with subcritical growth. Applying suitable variational and topological arguments, we obtain multiple positive solutions for ε>0 sufficiently small as well as related concentration properties, in relationship with the set where the potential V attains its minimum. |
Handle: | http://hdl.handle.net/11566/284884 |
Appare nelle tipologie: | 1.1 Articolo in rivista |