We consider the following class of fractional problems with unbalanced growth: {(−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=f(u)in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0in RN, where ε>0 is a small parameter, s∈(0,1), [Formula presented], (−Δ)ts (with t∈{p,q}) is the fractional t-Laplacian operator, V:RN→R is a continuous potential satisfying local conditions, and f:R→R is a continuous nonlinearity with subcritical growth. Applying suitable variational and topological arguments, we obtain multiple positive solutions for ε>0 sufficiently small as well as related concentration properties, in relationship with the set where the potential V attains its minimum.
Fractional double-phase patterns: concentration and multiplicity of solutions / Ambrosio, V.; Radulescu, V. D.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 142:(2020), pp. 101-145. [10.1016/j.matpur.2020.08.011]
Fractional double-phase patterns: concentration and multiplicity of solutions
Ambrosio V.;
2020-01-01
Abstract
We consider the following class of fractional problems with unbalanced growth: {(−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=f(u)in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0in RN, where ε>0 is a small parameter, s∈(0,1), [Formula presented], (−Δ)ts (with t∈{p,q}) is the fractional t-Laplacian operator, V:RN→R is a continuous potential satisfying local conditions, and f:R→R is a continuous nonlinearity with subcritical growth. Applying suitable variational and topological arguments, we obtain multiple positive solutions for ε>0 sufficiently small as well as related concentration properties, in relationship with the set where the potential V attains its minimum.File | Dimensione | Formato | |
---|---|---|---|
Ambrosio_JMPA_AR.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
738.75 kB
Formato
Adobe PDF
|
738.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Ambrosio_Radulescu(FINAL2).pdf
Open Access dal 25/08/2022
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Creative commons
Dimensione
630.56 kB
Formato
Adobe PDF
|
630.56 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.