We consider a strongly nonlinear differential equation of the following general type: (Φ(a(t,x(t))x′(t)))′=f(t,x(t),x′(t)),a.e. on[0,T],where f is a Carathédory function, Φ is a strictly increasing homeomorphism (the Φ -Laplacian operator), and the function a is continuous and non-negative. We assume that a(t, x) is bounded from below by a non-negative function h(t), independent of x and such that 1 / h∈ Lp(0 , T) for some p> 1 , and we require a weak growth condition of Wintner–Nagumo type. Under these assumptions, we prove existence results for the Dirichlet problem associated with the above equation, as well as for different boundary conditions. Our approach combines fixed point techniques and the upper/lower solution method.

Existence results for boundary value problems associated with singular strongly nonlinear equations / Biagi, S.; Calamai, A.; Papalini, F.. - In: JOURNAL OF FIXED POINT THEORY AND ITS APPLICATIONS. - ISSN 1661-7738. - ELETTRONICO. - 22:3(2020). [10.1007/s11784-020-00784-7]

Existence results for boundary value problems associated with singular strongly nonlinear equations

Biagi S.
;
Calamai A.;Papalini F.
2020-01-01

Abstract

We consider a strongly nonlinear differential equation of the following general type: (Φ(a(t,x(t))x′(t)))′=f(t,x(t),x′(t)),a.e. on[0,T],where f is a Carathédory function, Φ is a strictly increasing homeomorphism (the Φ -Laplacian operator), and the function a is continuous and non-negative. We assume that a(t, x) is bounded from below by a non-negative function h(t), independent of x and such that 1 / h∈ Lp(0 , T) for some p> 1 , and we require a weak growth condition of Wintner–Nagumo type. Under these assumptions, we prove existence results for the Dirichlet problem associated with the above equation, as well as for different boundary conditions. Our approach combines fixed point techniques and the upper/lower solution method.
File in questo prodotto:
File Dimensione Formato  
2020-BiagiCaPa_JFPTA.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 576.28 kB
Formato Adobe PDF
576.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
singular_BVP.pdf

Open Access dal 06/06/2021

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Tutti i diritti riservati
Dimensione 483.39 kB
Formato Adobe PDF
483.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/284544
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact