Serotonin (5-HT) receptors have been shown to homodimerize and heterodimerize with other G protein-coupled receptors (GPCRs), although the details of this process have not yet been elucidated. Here we use coarse-grained molecular dynamics on monomeric 5-HT2C receptors to predict the transmembrane (TM) helices involved in such associations. All these simulations were carried out both in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers and in mixed composition POPC-Cholesterol ones, to show whether the presence of cholesterol could directly influence and drive the dimeric association. The goal is to get insights on the self-assembly pathway leading to GPCRs 5-HT2C oligomerization, which is supposed to be the basis of its constitutional activity. From the analysis of the molecular dynamics trajectories, we observed the formation of 5-HT2C oligomers through self-assembly and we identified the main domains involved in the receptor dimerization. In particular, dimers and oligomers from the two different environments show TM4-TM5 and TM1-TM7-H8 as the preferential dimerization interfaces. Nevertheless, substantial differences arise for oligomers in POPC and in POPC-Chol membranes: in POPC-Chol the variability of dimers interfaces is strictly limited to the TM1-TM7-H8 and TM4-TM5 interfaces and the dimorphism depends on cholesterol that directly participates in its formation. These results are in agreement with both experimental evidences and other computational studies conducted on other GPCRs oligomerization.

Cholesterol-mediated oligomerization pathways of serotonin G-coupled receptor 5-HT2C / Massaccesi, Luca; Laudadio, Emiliano; Mobbili, Giovanna; Minnelli, Cristina; Galeazzi, Roberta. - In: INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES. - ISSN 0141-8130. - 160:(2020), pp. 1090-1100. [10.1016/j.ijbiomac.2020.05.231]

Cholesterol-mediated oligomerization pathways of serotonin G-coupled receptor 5-HT2C

Massaccesi, Luca;Laudadio, Emiliano;Mobbili, Giovanna;Minnelli, Cristina;Galeazzi, Roberta
2020-01-01

Abstract

Serotonin (5-HT) receptors have been shown to homodimerize and heterodimerize with other G protein-coupled receptors (GPCRs), although the details of this process have not yet been elucidated. Here we use coarse-grained molecular dynamics on monomeric 5-HT2C receptors to predict the transmembrane (TM) helices involved in such associations. All these simulations were carried out both in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers and in mixed composition POPC-Cholesterol ones, to show whether the presence of cholesterol could directly influence and drive the dimeric association. The goal is to get insights on the self-assembly pathway leading to GPCRs 5-HT2C oligomerization, which is supposed to be the basis of its constitutional activity. From the analysis of the molecular dynamics trajectories, we observed the formation of 5-HT2C oligomers through self-assembly and we identified the main domains involved in the receptor dimerization. In particular, dimers and oligomers from the two different environments show TM4-TM5 and TM1-TM7-H8 as the preferential dimerization interfaces. Nevertheless, substantial differences arise for oligomers in POPC and in POPC-Chol membranes: in POPC-Chol the variability of dimers interfaces is strictly limited to the TM1-TM7-H8 and TM4-TM5 interfaces and the dimorphism depends on cholesterol that directly participates in its formation. These results are in agreement with both experimental evidences and other computational studies conducted on other GPCRs oligomerization.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/282435
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact