In this paper we study the following class of fractional Kirchhoff problems: ε2sM(ε2s−N[u]s2)(−Δ)su+V(x)u=f(u) in RN,u∈Hs(RN),u>0 in RN,where ε>0 is a small parameter, s∈(0,1), N≥2, (−Δ)s is the fractional Laplacian, V:RN→R is a positive continuous function, M:[0,∞)→R is a Kirchhoff function satisfying suitable conditions and f:R→R fulfills Berestycki–Lions type assumptions of subcritical or critical type. Using suitable variational arguments, we prove the existence of a family of positive solutions (uε) which concentrates at a local minimum of V as ε→0.

Concentration phenomena for a class of fractional Kirchhoff equations in RN with general nonlinearities / Ambrosio, V.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 195:(2020). [10.1016/j.na.2020.111761]

Concentration phenomena for a class of fractional Kirchhoff equations in RN with general nonlinearities

Ambrosio V.
2020-01-01

Abstract

In this paper we study the following class of fractional Kirchhoff problems: ε2sM(ε2s−N[u]s2)(−Δ)su+V(x)u=f(u) in RN,u∈Hs(RN),u>0 in RN,where ε>0 is a small parameter, s∈(0,1), N≥2, (−Δ)s is the fractional Laplacian, V:RN→R is a positive continuous function, M:[0,∞)→R is a Kirchhoff function satisfying suitable conditions and f:R→R fulfills Berestycki–Lions type assumptions of subcritical or critical type. Using suitable variational arguments, we prove the existence of a family of positive solutions (uε) which concentrates at a local minimum of V as ε→0.
2020
File in questo prodotto:
File Dimensione Formato  
Ambrosio_NA-2020_2.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 983.7 kB
Formato Adobe PDF
983.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Kirchhoff-extension.pdf

Open Access dal 25/01/2022

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Creative commons
Dimensione 658.47 kB
Formato Adobe PDF
658.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/278512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact