In this paper we study the following class of fractional Kirchhoff problems: ε2sM(ε2s−N[u]s2)(−Δ)su+V(x)u=f(u) in RN,u∈Hs(RN),u>0 in RN,where ε>0 is a small parameter, s∈(0,1), N≥2, (−Δ)s is the fractional Laplacian, V:RN→R is a positive continuous function, M:[0,∞)→R is a Kirchhoff function satisfying suitable conditions and f:R→R fulfills Berestycki–Lions type assumptions of subcritical or critical type. Using suitable variational arguments, we prove the existence of a family of positive solutions (uε) which concentrates at a local minimum of V as ε→0.
Concentration phenomena for a class of fractional Kirchhoff equations in RN with general nonlinearities / Ambrosio, V.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 195:(2020). [10.1016/j.na.2020.111761]
Concentration phenomena for a class of fractional Kirchhoff equations in RN with general nonlinearities
Ambrosio V.
2020-01-01
Abstract
In this paper we study the following class of fractional Kirchhoff problems: ε2sM(ε2s−N[u]s2)(−Δ)su+V(x)u=f(u) in RN,u∈Hs(RN),u>0 in RN,where ε>0 is a small parameter, s∈(0,1), N≥2, (−Δ)s is the fractional Laplacian, V:RN→R is a positive continuous function, M:[0,∞)→R is a Kirchhoff function satisfying suitable conditions and f:R→R fulfills Berestycki–Lions type assumptions of subcritical or critical type. Using suitable variational arguments, we prove the existence of a family of positive solutions (uε) which concentrates at a local minimum of V as ε→0.File | Dimensione | Formato | |
---|---|---|---|
Ambrosio_NA-2020_2.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
983.7 kB
Formato
Adobe PDF
|
983.7 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Kirchhoff-extension.pdf
Open Access dal 25/01/2022
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Creative commons
Dimensione
658.47 kB
Formato
Adobe PDF
|
658.47 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.