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CONCENTRATION PHENOMENA FOR A CLASS OF FRACTIONAL KIRCHHOFF
EQUATIONS IN RY WITH GENERAL NONLINEARITIES

VINCENZO AMBROSIO

ABSTRACT. In this paper we study the following class of fractional Kirchhoff problems:

€25 M (2~ N[uf2)(~A)*u+ V(z)u = f(u) in RY,

we HSRY), u>0 in RV,
where € > 0 is a small parameter, s € (0,1), N > 2, (—=A)® is the fractional Laplacian, V : RY — R is
a positive continuous function, M : [0,00) — R is a Kirchhoff function satisfying suitable conditions and
f : R — R fulfills Berestycki-Lions type assumptions of subcritical or critical type. Using suitable variational

arguments, we prove the existence of a family of positive solutions (u.) which concentrates at a local minimum
of V.ase — 0.

1. INTRODUCTION

1.1. Main results. In this paper we deal with the following class of fractional Kirchhoff problems:
e25 M(e25 N[u)?)(—=A)*u+ V(z)u = f(u) in RN, (1.1)
u€ H5(RYN), u>0 in RV, ‘

where € > 0 is a small parameter, s € (0,1), N > 2, M is a Kirchhoff function, V' is a positive potential and
f is a continuous nonlinearity. The nonlocal operator (—A)® appearing in (1.1) is the so called fractional
Laplacian operator defined for smooth functions u : RY — R by

(—A)u(z) = C(N, )PV, /RN W dy,

where C(N, s) is a positive normalizing constant, and H*(R") denotes the fractional Sobolev space of func-

tions v € L2(RY) such that
|u(z) —u(y)]
//RZN |x—y|N+2S dxdy < oo

el s vy =/ [u]2 + [ul3.
We recall that Fiscella and Valdinoci [31] proposed for the first time a stationary fractional Kirchhoff model
in a bounded domain © C R" with homogeneous Dirichlet boundary conditions and involving a critical
nonlinearity:

endowed with the norm

{ M ([u]?) (=A)u = \f(z,u) + |u 5 in Q,
u=0 in RV \ ,

where M is a continuous Kirchhoff function whose prototype is given by M (t) = a + bt with a > 0 and b > 0,
A > 0 is a parameter and f is a continuous function with subcritical growth.

Their model generalizes in the fractional context the well-known Kirchhoff model introduced by Kirchhoff [44]
as an extension of the classical d’Alembert wave equation. For some interesting existence and multiplicity
results for Kirchhoff problems in the classic setting, we refer to [2,27,28,35,45,50] and the references therein.
In the fractional framework, after the pioneering work [31], many authors focused on fractional Kirchhoff
problems set in bounded domains or in the whole space and involving nonlinearities with subcritical or critical
growth; see for instance [10,30,42,43,46] and the references therein for unperturbed problems (that is when

(1.2)
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2 V. AMBROSIO

e =11in (1.1)), and [9, 11] for some existence and multiplicity results for perturbed problems (that is when
€ > 0 is sufficiently small).

On the other hand, when M(t) = 1, equation (1.1) boils down to a nonlinear fractional Schrodinger
equation of the type

e (=A)°u+V(x)u = h(x,u) in RY, (1.3)

proposed by Laskin [40] as a result of expanding the Feynman path integral, from the Brownian like to
the Lévy like quantum mechanical paths. Equation (1.3) has been object of investigation in these last two
decades and several existence and multiplicity results have been obtained under different conditions on V and
h; see [5,7,21,25,26] and the references therein. In a particular way, a great attention has been devoted to the
existence and concentration phenomenon as € — 0 of positive solutions to (1.3); see [3,6,22,29,34,36,39,47].
Motivated by the above works, the goal of this paper is to study the existence and concentration of positive
solutions to (1.1) under very general assumptions on the Kirchhoff function M and the nonlinearity f. We
always suppose that ¥V : RN — R is a continuous function which satisfies the following conditions due to del
Pino and Felmer [23]:
(V1) Vi :=inf gy V(z) > 0,
(V2) there exists an open bounded set A C RY such that
Vo = ;relf\V(:r) < min V(z).

We also set M :={z € A: V(z) = Vy}. Without loss of generality, we may assume that 0 € M.
Concerning the Kirchhoff function M, we suppose that M : [0,00) — R is continuous and such that:
M1) there exists mg > 0 such that M (t) > my for all ¢ > 0,

M?2) liminf, . [z\?(t) —(1- %‘?)M(t)t} = o0, where M(t) := [! M(7)dr,

(

(

(M3) M(t)/t¥% — 0 as t — oo,

(M4) M is nondecreasing in [0, 00),

(M5) t+— M(t)/t™= is nonincreasing in (0,0).

We note that, if s = 1, the above assumptions have been used in [28]. Clearly, M (t) = mg + bt, with b > 0,
satisfies (M1)-(M5) when b= 0, N >2 and s € (0,1), and N =3, s € (3,1) whenever b > 0.

In the first part of the paper, we require that f : R — R is a continuous function such that f(t) =0 for t <0
and fulfills the following Beresticky-Lions type assumptions [12]:

(fl) lim; o @ =Y,

(f2) limsup,_, o £ < oo for some p € (1,25 — 1), where 2% := 2 is the fractional critical exponent,

(f3) there exists T' > 0 such that F(T) > 27?2, where F(t) := fot F(r)dr.
The first main result of this work can be stated as follows:

Theorem 1.1. Assume that (V1)-(V2), (My)-(Ms) and (f1)-(f3) are satisfied. When s € (0, 3], we also

assume that f € Clo(;g(R) for some o € (1 — 2s,1). Then, for small € > 0, there exists a positive solution u.
to (1.1). Moreover, there exists a mazimum point v. € RN of u. such that lim._,o dist(z., M) = 0, and for
any such z., v.(x) = u.(ex + x.) converges, up to a subsequence, in H*(R™) to a least energy solution of

the limiting problem
M ([u?)(=A)*u+ Vou = f(u) in RV,

In particular, there exists a constant C > 0, independent of € > 0, such that

C N+2s
° vz e RV,

ue(z) < eN+2s { |z g |N+2s

Remark 1.1. The restrictions on the reqularity on f are only used to obtain the better regularity of solutions
to (1.1) which guarantees the Pohozaev identity (see Proposition 1.1 in [16]).

In the second part of this paper, we consider (1.1) by requiring that f satisfies the following Beresticky-

Lions type assumptions of critical growth [52], that is f fulfills (f;) and
f(t)

(f3) limy 00 2T 1,
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(f5) there exist A > 0 and p < 2% such that
f) > =" Pt v >0,

where A > 0 is such that

e pc(2,25)and A > 0if N > 4s,

e pE (25,2 and A > 0if 25 < N < 4s,

e peE (2 N{SQS] and A\ > 0 is sufficiently large if 2s < N < 4s.
Then, the second main result of this paper is the following:
Theorem 1.2. Assume that (V1)-(V2), (M1)-(Ms) and (f1), (f3)-(f5) are satisfied. When s € (0, 3], we also
assume that f € CZOO’S(R) for some o € (1 —2s,1). Then, for small € > 0, there exists a positive solution u.
to (1.1). Moreover, there exists a mazimum point x. € RN of u. such that lim._,q dist(z., M) = 0, and for
any such ., v-(z) = us(e x + 1) converges, up to a subsequence, in H*(RN) to a least energy solution of

M([u?)(=A)*u+ Vou = f(u) in RY.

S

1.2. State of the art and methodology. We point out that Theorem 1.1 and Theorem 1.2 can be seen
as the nonlocal fractional counterpart of Theorem 1.1 in [28] and Theorem 1.1 in [50], respectively. We recall
that in [28] Figueiredo et al. refined some arguments developed in [13,15,17], in which the authors studied
the existence and concentration of positive solutions for the nonlinear Schrédinger equation

—e? Au+V(z)u = f(u) in RY, (1.4)

and involving general subcritical nonlinearities. More precisely, Byeon and Jeanjean [13] explored what are
the essential features on f which guarantee the existence of localized ground states. To do this, the authors
developed a new variational approach which consists in searching solutions of (1.4) in a neighborhood of the
set of the least energy solution of the limiting problem associated with (1.4) whose mass stays close to M;
see [14,15,17] for more details. Subsequently, motivated by [28,52], Zhang et al. [50] extended the result
in [28] when f is a general critical nonlinearity by applying a suitable truncation argument.

The purpose of this work is to generalize the results in [28,50] to the fractional setting s € (0,1).
For the sake of completeness, we start to mention some recent results in the case M (t) = 1, that is when (1.1)
reduces to the fractional Schrédinger equation (1.3). Seok [47] proved the existence of multi-peak solutions
to (1.3) by assuming (f1)-(f3) and extending in the nonlocal framework the result in [14]. In [47], the author
did not introduce a penalization term as in [13,14] but proved a kind of intersection lemma by using degree
theory after transforming (1.3) into a degenerate elliptic problem via the extension method [20]. In [39]
Jin et al. considered (1.3) under conditions (f1), (f4)-(f4) and constructed a family of positive solutions to
(1.3) which concentrates at a local minimum of V' as € — 0. The authors combined the extension method,
a truncation argument inspired by [50] with the result in [47]. Simultaneously, He [34] obtained the same
result by applying the extension method and combining the penalization methods developed in [17] and [23],
respectively. We stress that this last approach has been previously used by Gloss [32] to extend the result
in [13] to a p-Laplacian problem involving a general subcritical nonlinearity.
We note that the results in [34,39,47] improve the previous ones obtained in [3,6,36] in which the authors,
motivated by [23], considered nonlinearities satisfying the Ambrosetti-Rabinowitz condition [4] and by re-
quiring that @ is strictly increasing for ¢ > 0. Indeed, under assumptions (f1)-(f3) or (f1), (f5)-(f%), the
Nehari method developed in the above mentioned papers does not work and it is very hard to verify the
Palais-Smale compactness condition in this situation; see [8] for more details.
Concerning fractional Kirchhoff problems, to our knowledge, only few papers deal with the existence and
concentration behavior of positive solutions as ¢ — 0. In fact, motivated by [3,6,36], in [9,11,37] the authors
studied the existence and concentration phenomena to (1.1) when M(t) = a+bt, N = 3 and s € (2,1).
However, the nonlinearities in [9,11,37] are less general than the ones presented here.
In this paper, by using suitable variational methods, we improve the results in [9,11,37] by considering a
more general class of fractional Kirchhoff problems in the whole space R, with N > 2. More precisely,
after realizing (1.1) as a local linear degenerate elliptic equation in Rf 1 together with a nonlinear Neumann
boundary condition on 6Rf+1, we take inspiration by the penalization approach in [13,23,32] and some
arguments used in [3,9,11,28,34,39,50], to obtain the existence of a family of positive solutions which con-
centrates around a local minimum of the potential V(z), as ¢ — 0. We emphasized that, making use of the
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extension method, several techniques used in the case s = 1 cannot be directly adapted in our setting because
we have to take care of the traces terms of the involved functions and to work with weighted Lebesgue spaces.
Moreover, due to the presence of the Kirchhoff term, our analysis is much more delicate and intriguing with
respect to the case M(t) =1 and s € (0,1) discussed above. For instance, if (u.) is a bounded sequence in
H*(RY) of solutions to (1.1) such that u.(e x4+ x.) — v in H*(RY) and z. — xg as ¢ — 0, then u is solution

to the limiting problem ag(—A)%u + V(zo)u = f(u) in RY, where ag := lim. o M([u.]?), and in general it

is complicated to verify that ag = M([u]?). Therefore, some refined estimates will be needed to overcome

these difficulties; see Lemma 5.1 and Lemma 5.3.
As far as we know, these are the first existence results for (1.1) under local assumptions on the potential V'
and general nonlinearities f with subcritical or critical growth.

The paper is organized as follows. In section 2 we introduce the notations and we recall some useful results.
In section 3 we study the limiting Kirchhoff problem associated with (1.1) by assuming (f1)-(f3). The critical
limiting Kirchhoff problem is considered in section 4. In section 5 we provide the proof of Theorem 1.1. The
last section is devoted to the proof of Theorem 1.2.

2. PRELIMINARIES

In this section we fix the notations and collect some preliminary results for future references. For more
details we refer to [19, 20,24, 25,43].
We denote the upper half-space in RV*! by

RYT! = {(2,y) e RY* 1y > 0}
For p € [1,00], let LP(RY) be the set of measurable functions u : RY — R such that
1 .
lulp = (Jon [ul? dz) " < if p < o0,
€SSSUPycrN |u(z)| if p = 00.

Let D*2(RY), with s € (0,1), be the completion of Cg° (R™) with respect to the Gagliardo seminorm

(// e |N+2)s|2 o dyf |

Then (see [24]) the embedding D%?(RN) ¢ L2 (RN ) is continuous and
lulas < (N, s)[u]s Vu e D*?(RN).
Denote by H*(R") the fractional Sobolev space
HY(RY) := {u € L*(RY) : [u], < o0}
endowed with the norm )
lull s vy = ([ul? + |uf3)?

Then, H*(RY) is continuously embedded in LP(RY) for all p € [2,2}) and compactly in L} (RY) for all
p € [1,2%); see [24]. We also define the fractional radial Sobolev space

fad(RY) = {u € H*RY) : u(@) = u(|z])}.
It is well-known (see [41]) that H? ,(RY) is compactly embedded in LI(RY) for all q € (2,2).

rad

Let us define X*(RY ™) as the completion of C2°(RY ™) under the norm

1
o 1-2s 2
||u||Xs(Rf+1) = (//Rf“ Y |Vul dxdy)

Then (see [18]) there exists a linear trace operator Tr : X*(RY*!) — D%2(RV) such that
vV ’is[Tr(u)]s < Hu||Xs(Rf+1) for any u € XS(Rﬁ—H)v

where rg := 2172°T(1 — 5)/T'(s). In what follows, we set u(-,0) := Tr(u).
Denote by
BE(£07yO) = {(x,y) € R—I}\-[Jrl : |(1',y) - (moay0)| < R}
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RV with center (z0,y0) € RY™ and radius R > 0, and

I'%(20) = {(,0) € ORY ™ : [z — 2| < R}

the ball in RV with center zg € RY and radius R > 0.
We denote by X§(BF(0,0)), with R > 0, the completion of C2°(B#(0,0) UT'%(0)) under the norm

3
lell s 5 0.00) = (//B+(O ) y123|VUI2dxdy> :
r\Y;

Note that if w € X§(B}(0,0)) then its extension by zero outside B} (0,0) can be approximated by functions
with compact support in Rf“. Moreover, for all r € [1 27] and u € X§(B%(0,0)) it holds (see [18])

C(r,s,N,R) / [u(-,0)|" da // y' 72| Vul? dady.
9(0) B+<00)

XL RYH) = {uGXS(RNH) :/RNuz(x,O)dfc<oo}

the open ball in

We define

equipped with the norm

l[ell 1.0 @y 1y = (//N 91725|Vu|2dxdy+/ u*(z,0) dx)
]R++1 RN

XpaRYT) o= {u e XM RYM) ulz,y) = ullzl,»)}-

rad

The following Sobolev inequality holds true:

1
2

Finally, we consider

Lemma 2.1. [18] For every u € X'*(RY™") it holds for some positive constant S(s, N) >0

S(s,N) (/ lu(z, 0)[% dx) ’ // y' 2|Vl dady.
RN N+1

N+1
R+

For all r € (1,00), we define the weighted Lebesgue space L"( endowed with the norm

// y 72 u|" dady.
RYT!

We recall the following useful result proved in [25]:

Lemma 2.2. [25]
i) There exists a constant C > 0 such that for all w € X5(RY*) it holds
+

1 1
// y' [P dedy | <O // y' Ve dedy |
Rf+1 Rf-'—l

where v := 1+ NEQS,
ii) Let R >0 and T be a subset of X5(RY ™Y such that
+

7y1—2$)

sup / y' 72|\ Vw|? dedy < oo.
weT Jry+
Then, T is compact in L*(B}(0,0),y*=2%).

The fractional Laplacian (—A)® may be defined for u : R — R belonging to the Schwartz space of rapidly
decaying functions by

(=A)°u(x) = C(N, S)P.V./ Mdy

Ry |z —y|NF2s
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) 1 — cos(z1) 3
C(N,S) = (/RN |1’|1V+2de>

It can be also defined using Fourier transform by
F((=A) u(k)) = [k[** Fu(k).
It is well-known (see [24]) that for all u € H*(RY)

where

(Cayiu = [ RPFuR) dk = SOV, o)l

In [20], it is showed that one can see (—A)® by considering it as the Dirichlet to Neumann operator associated
to the s-harmonic extension in the half-space, paying the price to add a new variable. More precisely, for any
u € D52(RY) there exists a unique function U € X S(Rf *1) solving the following problem
s (0 1—2s _ i RN+
{ —div(y'=**VU) =0 1n]R_~_N+,1 N
U(-,0)=u on OR; ™" =RY.
The function U is called the s-harmonic extension of u and possesses the following properties:
(4)
ou oU
— = — limy' ¥ —
Ovlt—2s y—0 Ay
(i1) \/Fs|u]s = ||U||X5(Rf+1) < HVHXs(]Rf+1) for all V€ X*(RY™") such that V(-,0) = w.

(i1i) U € O=RYT1) N L2(K,y'~2*) for any compact set K C RY T,

(z,y) = ks(—A)°u(z) in distribution sense,

Ulx,y) = | Ps(z—z,y)u(z)dz
]RN
where
y2s
P, ZT,Y) = PN,s——  __Nizs
o) (|22 +y2) "5

and py s is a positive constant such that fRN Py(z,y)dx =1 for all y > 0.
Using the change of variable x — € x, it is possible to prove that (1.1) is equivalent to the following problem

{ M([u]d)(=A)*u+ Ve(z)u = f(u) inRY,

ue HRY), u>0 in RY, (2.1)

where V. (x) := V(e ). Then, in view of the previous facts, problem (2.1) can be realized in a local manner
through the nonlinear boundary value problem:

—div(y'=%Vw) =0 in RY T
1 Ow = ko [-Vew(-,0) + f(w(-,0))] in RN (2:2)
M(‘lwl‘iS(RN_"l)) Ovl—2s s 5 ) 3 1 .
+

For simplicity we will drop the constant ks from the second equation in (2.2).

3. SUBCRITICAL LIMITING PROBLEMS

We begin by modifying f as in [12]. Let f:R — R be defined as follows:
(1) if f(t) >0forall t > T, put f(t):= f(t),
i1) if there exists 79 > T such that f(79) = 0, we put
(i1) , We p
) = { f(t) fort <,

0 for t > 79,

where T := sup{t € [0,T] : f(t) > Vit}.
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Note that f satisfies the same assumptions as f and

0< liminfM < limsup@ < 0.
t—oo  { t—o00 P
Moreover, if (ii) occurs and u is a solution to (1.1) with f(¢), then we can use (u — 7o) as test function to
deduce that u < 7o in RV, that is u is a solution to (1.1) with f(¢). From now on, we replace f by f and
keep the same notation f(t).
In this section we focus on the following limiting problem associated with (2.2):

—div(y'~?*Vw) = 0 in Rf"'l,
1 ow = —Vyw(-,0) + f(w(-,0)) inRV. (3.1)

M 2 o
Mol s, 2

To obtain our results we take inspiration by some arguments used in [28,35]. Firstly, we show that the
solutions of (3.1) satisfy a Pohozaev identity.

Lemma 3.1. Assume that (M1) holds and u € X *(RY*") is a solution to (3.1). Then u satisfies the
following Pohozaev type identity:

N —2s Vo 4

Pl0) = S5 Ml o ol = N [ F(0(,0) = (0,0 do o
Proof. Put ag := M(||uH§(S(R$+1)). Then u is a solution to
—div(y'=%Vu) =0 in RY*H
{(;@%th@m+fWhm) in RY.

Arguing as in [5,7,16,21], we deduce that u satisfies the following Pohozaev identity

N —2s 1%,
5 %WﬁmTWJVMFW%W*gﬁ@WMZO

which implies the thesis. U

In order to find weak solutions to (3.1), we look for critical points of the energy functional Ly,
X1 (RY*!) — R defined as

1~ 1
Lyy(w) i= 5 M (||u||§(S(M+1)) +5 /RN Vou?(z, 0) do — /RN F(u(z,0)) dz.

From (f1)-(f2), it is easy to check that Ly, € Cl(Xl’S(RfH),R). Moreover, we see that Ly, possesses a
nice geometric structure.

Lemma 3.2. Assume (M1)-(M3). Then, Ly, has a mountain pass geometry.
Proof. By (M1), (f1), (f2) and H*(RY) c LPTH(RY) we have

mo Vo
Ly (1) > T a2

o@yey T 5 [l 0 = eful, 0) = Cefu( 0)[7H

+1
> Cl||u|\§(1,s(Rf+l) — C2||u||§(1,s(Rf+1).

Hence, there exist p,6 > 0 such that Ly, (u) > 6 for [[ul| x1..gy+1) = p.
+
Now, for all R > 0 we define

T if (z,y) € B£(0,0),
wnla,y) =4 T(R+1-VREF2) i (5,y) € B, (0,0)\ B(0,0),
0 if (z,y) € RYT'\ Bf.,(0,0).

It is clear that wg € Xrlzlfl(RfH). Note that, by (f3), for R > 0 large enough it holds

Ve
F(wr(z,0)) — —2wk(z,0)ds > 1.
. 2
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Now, fix such an R > 0 and consider wg (7, y) := wgr(x/e’,y/e?). Then,

1=, (n_oe v
Lyy(wre) = 5M (N wg |, gwery) =€ | Fwg(x,0)) = S-wh(,0) de
2 X (R+ ) RN 2

1~ X
< §M(6(N_25)9||wR||§(s(Rf+1)) — eV & —c0as § — o

because (M3) yields
e—N@]/\Z(e(N—Qs)GHu}RH?XS(Rf_H)) — 0 as 6 — co.

O
In view of Lemma 3.2 we can define the minimax level
= inf L t 3.2
cvo = b max Ly, (v(1) (3.2)
and
Ty, == {y € C([0,1], X"*(RY™)) : 7(0) = 0, Ly, (v(1)) < 0} (3.3)
Obviously, ¢y, > 0. We can also note that
Cvy = CVp,rad; (34)
where
rad := inf L t)),
Corad =l max vo(7(1))
and

Ty rad := {7 € C10, 1], X3 (RYT)) 4(0) = 0, Ly (+(1)) < 0}
Indeed, cy, < ¢y, rad by the definitions. For the opposite inequality, take v € T'y, and consider ~.(t) =
pe *y(t), where p. € C°(RY ') is a standard mollifier. Then, 7. € C([0,1], X'*(RY ™)), 7.(0) = 0 and
Ye(t) € C=RYT N XL (RYH) for all ¢ € [0,1]. Since
sup [[7(t) = ()l x1.0@ry+1y) = 0 as € =0,
te[0,1] +
we deduce that

L t L t — 0.
2y P00 = gy el O) e <

Now, let ¢*(t) be the symmetric decreasing rearrangement of v, (t)(-,0) € H*(RY), and denote by v (¢) the
solution of
{ —div(y'=2Vy (1) =0 in RY T,
1=()(-,0) = ¢z (1) in RY.
Since ~X(t) is the s-harmonic extension of ¢Z(¢), and using the trace inequality and Theorem 9.2 in [1] we
have

172 Ol xo @y ey = [92]s < e 0)s < el xo@y)-
On the other hand, for all G : R — R continuous
[ GO0 = | G0y = [ GO0 da.

Observing that M is strictly increasing (by (M1)), we obtain that Ly, (vX(¢)) < Ly, (7.(t)) for all ¢ € [0, 1].
Moreover, since 7. (+,0) € C*°(RY), we have that v.(-,0) is co-area regular (see [1]) and using Theorem 9.2
in [1] we deduce that ¢} € C([0,1], HZ 4(RY)) and consequently v € C([0, 1],X’C1,;§(Rf+1)). In conclusion,
vZ € 'y raa and (3.4) holds true.

Now we prove the existence of a Palais-Smale sequence of Ly, with an extra property related to the
Pohozaev identity; see [28,35,38].

Proposition 3.1. There exists a sequence (w,) C X:;Z(Rf“) such that

Ly, (wy,) = cv,, Lt (wy) = 0, P(w,) = 0. 3.5
0 0 Vo
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Proof. Let Ly,(0,u) := (Ly, o ®)(0,u) for (0,u) € R x XS (RYTY), where ®(0,u) = u(%,%). Here
Rx X S(RN“) is equipped with the standard norm

rad
1
100, ) sy = (161 + Tl %, S@y+)*

It follows from Lemma 3.2 that ZVO has a mountain pass geometry, so we can define the mountain pass level
of LVO

¢y, = inf Lv.(3(t
Vo ;Y,g%vo nax, vo(Y(1))

where
Ty, = {7 € C([0,1], R x X5 (RY™)) : 5(0) = (0,0), Ly, (7(1)) < 0}.

It is easy to show that ¢y, = cy, (see [7,38]). Then, by the general minimax principle (see Theorem 2.8
in [49]), we deduce that there exists a sequence ((6,,,u,)) C R x Xrlafl(]RNH) such that, as n — oo,

(i) (Ly, o ®)(On,un) = cvy,

(i) (Lyy © ®) (0, up) — 0 in (R x X5 (RYTY)Y,

rad
(idi) 6, — 0.
Indeed, if we take ¢ = &, = %, 6 = 6, = 1 in Theorem 2.8 in [49], (i) and (ii) follow by (a) and
(¢) in Theorem 2.8 in [49]. In view of (3.2), (3.3), for ¢ = &, := 3, we can find v, € Ty, such that
o,

supyeio,1] Lo (n (1) < v + 77 Set Fu(t) := (0,7(t)). Then

- 1
sup (Ly, 0 ®)(Jn(t)) = sup Ly, (1n(t)) < cvp + —-
t€[0,1] te[0,1] n

From (b) of Theorem 2.8 in [49], there exists (6, u,) € R x X*(RY*!) such that

3w

diStRxxl,s(Rf"’l) ((9n7 ’Ltn), (07 Vn(t>)) S
that is (4i7) holds true. Here, we used the notation

. L . _ 2 _ 2 1
dlSt]RXxl)S(RﬁJrl)((e,U)7A) = (T’U)ER;;?S(HQH)(W T+ |Ju U||X1,5(Rf+l))2a

for A C R x H*(RY). Now, for (h,w) € R x XL#(RY*1), it holds
((Lvy © ®) (O un), (hyw)) = (Ly;, (P(On, tn)), D' (05, w)) + P(P(On, un))h. (3.6)
Then, choosing h = 1 and w = 0 in (3.6), we deduce that
P(®(0,,u,)) — 0.

On the other hand, for every v € Xl’S(RfH), taking w(x,y) = v(e’z,ey) and h = 0 in (3.6), it follows
from (i) and (i47) that

(Ll (2 (0 10)). ) = o(D)foe 2. €% 9) - vy = (D[] oy
Consequently, wy, := ®(0,,,u,) is the sequence that fulfills the desired properties. O
Lemma 3.3. Bvery sequence (w,) satisfying (3.5) is bounded in X5 (RY ™).

Proof. Using (3.5) we see that

1
Np(wn)

1~ 9 N —2s 9
= 537 (Il eron) = (T ) M (e By, Tl o

cvy +on(1) = Ly, (wy) —
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From (M?2) we deduce that (”wnHXs(Rﬂf“)) is bounded in R. On the other hand, P(wy) = 0,(1) and (f1)-(f2)
yield
N — 23
2

M (B ony) Bl o, + N5 (O = N [ P (a.0)) da + 0,1

< Nown (-, 0)[3 + NCslw (-, 0)[3: + 0, (1).

Choosing ¢ > 0 sufficiently small and using (M 1) and the boundedness of (Jwy,(-,0)|2), we can infer that
(Jwy(:,0)]2) is bounded in R. In conclusion, (w,) is bounded in X (RY ™). O

Lemma 3.4. There exist a sequence (z,,) C RN and constants R > 0, 8 > 0 such that
/ w? (xz,0) dz > B,
9 (zn)

where (wy,) is the sequence given in Proposition 3.1.

Proof. Assume by contradiction that the thesis is not true. Then, by the vanishing Lions-type lemma (see
Lemma 3.3 in [36]), we deduce that

wy(+,0) — 0 in LYRY) Vg€ (2,20). (3.7)
Consequently, by (f1)-(f2), we have

/ f(wn(x,0))w,(x,0) de = 0,(1).
RN
Recalling that (L, (wn), wn) = on(1), we get
M e, o 0 [ oy + Vol 0)3 = (1)

and using (M1) we obtain that
”w"”leS(Rf“) — 0.

Therefore, Ly, (w,) — 0 and this leads to a contradiction because ¢y, > 0. O

Now we define
Ty o= {u € XM (RETH\ {0} : Ly, (u) = 0,maxu(,0) = u(0,0)},

b\/ := inf LVO( )

0 u€Tvy,
and

Vo = {u S TVO : LVO(U) = bVo}-
Lemma 3.5. Assume (M1)-(M5). Then there exists u € Sy,.

Proof. Let (wy,) be the sequence given by Lemma 3.1. Set @, (z,y) := wy(z + z,,y) where (z,) is given in
Lemma 3.4. By Lemma 3.3, we know that (wy,) is bounded in X q(]RN"’l) that is ||wn||X1,S(R§+1) < C for

rad
all n € N. Hence W, — @ in X:GZ(RNH) and W, (-,0) — @(-,0) in LI(RY) for any q € (2,2%), for some
wE Xrad(RN“) \ {0}. Then, @ is a weak solution to
{ —div(y'=%Vw) =0 in RYH (3.8)
L5280 = Vo (-,0) + f(i3(0)) in RV, '
where

ag = lim M(||wn||X (RN+1)) = nh—>Holo M(Hwn”XS ]RN‘H)) < M(C?) < o0

n=r00
Note that the last inequality is due to (M4).
Clearly, by Fatou’s Lemma, we have

0 <mo < M([[@]%. gy+,) < o (3.9)

In what follows, we prove that
60 = M(J 1, o))
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and thus @ is a weak solution to (1.1). Since W solves (3.8) and using the regularity assumptions on f, we
deduce that w satisfies the following Pohozaev identity [7,16,21]:

N —2s
2
Now, we apply Lemma 2.4 in [21] with X = H?

rad

_ . Vo ..
ol yony = N [ (Fl@,0) - Lit(w.0)) o =o. .10

(RN), P(t) = f(t)t, p1 =2 and py = 2¢ to see that
aoll @[, g1y + Volo(, 0)3 < Lim inf[M (@[, gy 1@l gy + Vol@n (-, 0)]
( + ) n—oo ( + ) ( + )

< T Sup[M (i3 5. gl [ vy + Vol (- 0) 3]
n—o00 + +
)

= limsup{M (w2 ger % gy + Vol (- 0) 2]
n— 00 + +

= lim sup fwn(x,0))wy(z,0) de

n—00 RN

= lim fp(x,0))w,(x,0) dx

n—oo RN

- / F(i(, 0))i(, 0) da
RN

= ao“w||§(S(Rf+l) + VE)‘QI](, 0)|%

which implies that [[@n x1..@y+1y = [@]x1,0@y+1, and thus @, — @ in X2*(RY). Hence, ay =
+ +
=112
M(HwHXs(RfH))-
Ly, (@) = cy, and Ly, (w) = 0. Since w # 0, we deduce that cy, > by,.
Now, let w € X1*(RY*!) \ {0} be any solution to (3.1). Define

_Jow($,¥) fort>0,
V(1) = { 0 for t =0.

Therefore, by Ly,(w,) = Ly,(w,) — cy, and Ly, (w,) = Ly, (0,) — 0, we have that

Using the fact that w satisfies the Pohozaev identity (see Lemma 3.1), we get
L= (N2, 12 N (N—=2s 2 2
Ly, (1(8)) = 38 (V=2 w3 vy ) =t (S5 ) M (ol v ) ol vy

and differentiating with respect to ¢ we obtain

d N —2s
Ly (1) = =

By (M5) and using a change of variable, we observe that ¢ — M (¢ =2 ||w||? (RNH))/tQS is nonincreasing in
+

s eyt 2 7 M2 0 ) = 2 M (ol o))

s

(0, 00), so we have
d d
%LVO (V(t)) >0 Vte (Ov 1)’ %LVO(,‘Y(t)) <0 Vte (13 OO);

which implies that
max Ly, (7()) = Lv, (v(1)) = Lv, (w).

Moreover, noting that (M1) and (M3) yield

AT (+N—2s N-—2s B
im M) ):{@]:hm MET™™) N2,
t—00 tN 00 t—00 (tN725)Nf525 N
we deduce
N1 =/ v N —2s
L) = 5 | e (2520l uyen,) = (S ) M (Wl uyon) Folleseyon| = =,

as t — oo. Then there exists 7 > 0 sufficiently large such that Ly, (y(7)) < 0. After a suitable scale change
in ¢, we obtain that v € T'y,. By the definition of cy,, we see that Ly, (w) > cy,. Since w is arbitrary, we
have that by, > cy, and this implies that by, = cy,.
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Choosing 4~ = min{u, 0} as test function in the weak formulation of (3.1) we can deduce that v > 0 in
RY. By (f1)-(f2) and using a Moser iteration argument (see [7,21]), we obtain that u € L (R”). By the
growth assumptions on f and in view of the Hélder regularity results in [48], we deduce that u € C%#(RY)
(see [7,16,21]). From the Harnack inequality [19,33] we conclude that u > 0 in RV. O

Remark 3.1. For m > 0, we use the notation

1~ m
Lo = 50l y)) + a0 = [ Plat,0)) de

and denote by c,, the corresponding mountain pass level. It is standard to verify that if mq > mo then
Cmy > Cmy -

In what follows, we aim to show that Sy, is compact in X 1’S(Rf *1). To do this we begin by giving some
auxiliary results. Let us consider the following fractional elliptic problem:

{ —div(y*=2*Vw) = 0 in Rf“, (3.11)
% = _VOw('70) + f(w(v O)) in RN' )
If w is a solution to (3.11), then it satisfies the Pohozaev identity (see [5,7,16,21,51])
N —2s 1%
5 ||w||§{s(M+1) - N/RN F(u(z,0)) — 7%2(9;, 0) dz = 0. (3.12)
Let
£ () = =2 20— [ Flu(x,0)de
Vo — 9 S(Rerl) 2 ) 2 BN 9 )
BV(J = inf &y, (u)7
UETVO
T = {u € X" (RET)\ {0} : &1 (u) = 0,maxu(-,0) = u(0,0)},
and

gVo = {u € %Vo : gVo (u) = 6VO}'
Next we show that it is possible to define a map which relates the ground state solutions of (3.11) to the
ones for (3.1). We first prove the following result for the Kirchhoff functions.

Lemma 3.6. Assume that M € C([0,00)) and M(t) > 0. Then, (M5) is equivalent to
(M6) t+— M(t)— (1 — 22) M(t)t is nondecreasing in [0, 00).

Proof. We argue as in Lemma 2.17 in [28]. Let (M5) be in force. Then, for 0 < ¢; < t5 we have

M(ts) — (1 - ?\?) M(ta)ty = M(t1) + /t2 M2<f) N dt — <1 - ?\f) M(ts)t

th tN=2s

— M(t . 2
> M(tl) + %2)/ LLNZ—QS dt — (1 — S) M(tg)tg
t21\l—2s tl N

= ]\/4\@1) — <1 — 28) Mgfz)thi’zs

(3.13)

N

N;2s
t2

> M(ty) — (1 - ?\‘;) M (t1)t1.

The other implication is obtained as in the case s = 1 with small modifications, so we omit the details. [
Lemma 3.7. Assume (M1)-(M5). Then, Sy, # () and there exists an injective map T : Sy, — Sy, .
Proof. By [7,16,21] we know that Sy, # 0. Let ¢ € Sy, and define

b = inf {1501 42 = MEV 9], o))}

X=(RYHY
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In what follows we verify that ¢4 € (0,00). Since Ty, # (0 by Lemma 3.5, we can find w € Ty, and put

% = M(Hw||§(s(ﬂ{<f+1))' Set wq (z,y) = w(ax, ay) and note that w, is a weak solution to

(3.14)

{ —div(y' =% Vw,) =0 in RYH,
WMo = —Vowa(-,0) + f(wa(0)) in RV
By (4.3) we get

S

S S _
N||¢||§(s(Rf+l) = 5V0(¢) < gVo<w06) = N”wa”is(Rf*l) = NOKQS Nllw”?ﬁ(Rf*U

that is N =25 ¢2 . < Hw”?ﬁ(Rf'H)' Using (M4) we have
M N—2s 2 A<M 2 ‘ ) = 28.
(a ||¢”X$(Rf+ )) — (”w”Xa(Rf+ )) (6]

From (M1) and the continuity of M, there is ty € (0, a] such that 2° = M (t)~2%||¢||? s(RN+1))~ Consequently,
+
0<mg< t?f < a2 and ty is well-defined.
At this point, for u € Ty, we define
(Tu)(z,y) = w(x/tu, y/tu)-
Since
tizLS = ‘7\4'(757]¢\[728||u||2 s(Rerl))a

N

we see that Twu is a solution to (3.1). Using t, < «a and «
2

P(u) =0 it holds

?(S(]R$+l) S ||wH§(s(Ri+l)

On the other hand, we observe that for all u € les(RfH) such that

we get

2
Xs(RYTY

1|—~ 2s
Ly, (u) = 9 M(HUH?@(MH)) - (1 - N) M(||UH§(5(R$+1))||UH§(5(R§+1)

Then, from Lemma 3.6 and (M5), we deduce that Ly, (Tu) < Ly, (w). By the arbitrariness of w € Ty,, we
infer that Tu € Sy,. Hence, Sy, # 0 and T : Sy, — Sy, is well-defined.

Finally, we show that T is injective. Let ui,us € §V0 be such that Tu; = Tus. Then, uy(z,y) = us(ax, ay)
for some o > 0. Since w1 (+,0) and uz(-,0) are nontrivial solutions of (—A)%*u+ Vou = f(u) in RV, we deduce
that a®*(—A)*ug(ax,0) = (—=A)%uy(x,0) = (—=A)*uz(ax, 0) which implies that (a®* —1)(=A)%us(-,0) = 0 in
RY. Hence, @ = 1 and u; = us. O

Proposition 3.2. Sy, is compact in X1*(RY ).
Proof. Let (w,) C Sy, and set v, (x,y) 1= wp(anz, any) where

Oéis = M(||wn||§(g(R1+1))

Then, v, is a solution to (3.11). Now we prove that v, € Sy, and that there exists Cp > 0 such that
mg < a2% < C2° for all n € N. Note that mg < a2® thanks to (M1). Now, by Lemma 3.1 we have

1
bVo = LVO (wn) - NP(’U)”)

- 1 [~ 9 2s 2 2
= 5 [T () = (1= 5) 2 (Il ey, 2]

In light of (M2) we deduce that ||wy]| . ®YH) is bounded and then («,) is bounded.
Take ¢, € Sy,. Proceeding as in the proof of Lemma 3.7 and using (M6) we can see that ||¢n||§(s(RN+1) <
v

an||§(s(RN+l)7 tn < an and by, = Ly, (¢ny,) < Ly, (wn) = by,, where
+

to 1= inf {1 € (0,00) : 12 = M(tN—2‘9||¢n||§(s(Rf+l))}



14 V. AMBROSIO

and ¢, (7,y) == ¢n(i, ) = T(dn). Moreover, Ly, (dn,,) = by, = Ly, (wn). At this point, if we show
that ’

||¢"”X§(Rf+l) = H'Un”Xs(Ri\ji»l), (3.15)
then we have

S S
Evy (én) = NH%HQ RN+ = ﬁ”vnnz RN+ = &y, (vn),

where we used (4.3). Hence we deduce that v, € gvo Next, we prove that (3.15) holds true. Assume by

contradiction that ||vy]| . B+ > ||¢n||Xs(Rf+1) Taking into account that ¢, < «, and Hwn”Xs ®YHY) T

ay~ 2S””UnH2 RY+1)? we get
1., XS(RN‘“) - tN 2s||¢n||x S(RYHL) < 04N 2s||UnH2 (RY+) ||wn||§(s(Rf+1)-
On the other hand, using P(¢,,) = 0 = P(w,,), we infer that
1 {— 9 2s 9 9
5 {M(H(bn,thXS(Ri]‘*'l)) - (1 - N) M(||¢n,tn|| S(Rf"’l))'(b”vtn”XS(]Ri"*'l)}
1 {— 9 2s 9 9
= Ly (bnen) = Dvawn) = 3 d Tl aveny) — (1= 20 ) Ml e ooy Mo e vy -
By (M5), (M6) in Lemma 3.7 and (3.13), it is easy to see that for any ||¢,, tn”Xs R+ <t <ty <
Hwn||Xs R+ it holds
—~ 2s — 2s
M) — (11— = | M )t1 =M(ts) — (1 — — | M(t2)t
)= (15 ) M =) - (1- ) Mt
and

M(t)  M(t)
25/(N=2s) ~ (2s/(N-2s)" (3.16)
1 2

Otherwise, we have Ly, (¢n+,) < Ly, (wy), that is a contradiction. Moreover, in view of (3.16), we get
M) = kot ™55 in 160, e, gavonys Ionles gavon) )

for some ko > 0. By the definitions of a,, and t,, and using t2~ 25||qz§n||X LRV ||¢>n,th§(S(RN+1), we
+
deduce that

£ = M6l ) = Kot én o

ais = (HwnHXs RN‘H)) = M(”Un”Xs(Rf-H)) - k0a2sl|vn” Ns(?RN-H)

which gives ||¢””§(s(Rf“)

Now, observing that w,, (z,y) = v, (a;, 'z, a;, 1y), it is enough to prove that v,, has a convergent subsequence
in X1 (RY*). Since Sy, is compact in X1*(RY*!) (see Proposition 2.6 in [47]) we obtain the thesis. [

N —2s
.=t .. -
=k, = ||vn|| RN“) and this is a contradiction.
1

4. CRITICAL LIMITING PROBLEMS

In this section we extend the previous results for the following critical limiting problem:

—div(y'~2*Vw) = 0 in RY T,
1

M, RNH)aﬁwz = —Vow(-,0) + f(w(-,0)) inRY, (4.1)
+
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where f satisfies (f1), (f4) and (f4). The study of (4.1) will be done following some arguments used in [50].
In order to find weak solutions to (4.1), we look for critical points of the energy functional Ly, : XLS(RfH) —
R given by

1~ 1
Ly, (u) := §M (||u||§(s(Rf+1)) +3 /RN Vou?(z,0) dx —/ F(u(z,0)) dz.

RN
We define
T = {u e XS(RE)\ 0] Ty ) = 0o, 0) = u(0.0)}
bvo = uie%o LVU (u),
and

Sy, :={u € Ty, : Ly, (u) = by, }

We consider the following elliptic critical problem:

—div(y'~2*Vw) = 0 in RY T,
ow : N (42)
1% — —Vow(+,0) + f(w(,0)) in RY.
Any solution w to (4.2) satisfies the following Pohozaev identity (see [5,39,51])
N-2 1%
Nl g, = N [ Flu(z,0) = Lu?(x,0) de = 0, (4.3)
2 (R+ ) RN 2

Let us define

v

S0~ [ Flu.0)d,
RN

by, := inf Ey,(u),

1
5V0(u) = §||u||.2X*(Rf+l) +

uETvD
where
Tvy = {u e XUARYTHY\ {0} : & (u) = 0, maxu(-, 0) = u(0, 0)} ,
and

ng = {U € :7:1/0 : Svo(u) = BVO}’-
In what follows, we show that Sy, is compact in X 178(]1%1 1), Arguing as in the proof of Lemma 3.7 and

in view of results in [5,51], we obtain that:

Lemma 4.1. Assume (M1)-(M5). Then, Sy, # 0 if §V0 # (. Moreover, there exists an injective map
T : Sy, = Sv,. In particular, for any u € Sy,

(Tu)(2,y) = w(z/tu, y/tu)

where t, := inf {t € (0,00) : t? = M(tN_quHi(s(RfH))}.

Lemma 4.2. Assume that §V0 # 0. Then Sy, # 0. Moreover, for any v € Sy, there exists u € §v0 such
that v(x,y) = u(x/hy,y/hy), where h25 = M(|jv||? S(RNH)).

+
Proof. By the definition of T, we know that Sy, # 0 if Sy, # 0. Let v € Sy,. Thus v satisfies (4.1) and

Ly, (v) = by,. Define u(z,y) := v(hx, hy) where h?* := M(”U”ismf“))' Then, u solves (4.2). Now, we show

that u € §V0. To do this, we prove that &y, (u) = BVO. Using the Pohozaev identity, we know that

9 237'1\7
s M(”UHXs(RfH)) 8

N

5Vo (u 2s

N-—2s

2
(HUHXs(RfH))
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Let @ € gvo. Then ¥ := T = u(x/ta,y/ta) € Sv,, where ¢ is defined as in Lemma 4.1. By Lemma 3.1
(which holds even if replace (f2)-(f3) by (f3)-(/f4)), we obtain that

- 1 [—~, . 2s - -
D (0) = 5 [T yony) = (1 55 ) MO o Mol o | =00
Do) = g [l on) = (1= 5 ) MO T o Mol | = v

On the other hand, by the proof of Lemma 3.6 and (M5), it is easy to see that if for some 0 < ¢; < tg it
holds
M(ty) — (1 - 25) M(ty)ty = M(ts) — (1 — 25) M (t2)ts
N N
then
M(t1) M((t2)

t?s/(N—Qs) - tgs/(N—Qs)'

Hence, by (4.4), it follows that

o [ MO g 175

5V0 (’U,) = N

S o ~
2 = NHUHXS(Rerl) = bVo

2
(101 ry)
that is u € §V0~ O

Lemma 4.3. Assume that gvo # 0. Then there exist C,c > 0 (independent of v) such that ¢ < h, < C for
all v € Sy, where h, is given in Lemma 4.2.

Proof. Fix v € Sy,. Then h2* = M(||1)H§(S(RN+1)). From (M1) we have that h2® > mg. On the other hand,
by Lemma 3.1, we see that for all v € Sy, ’

1|~ 9 2s 9 9
D (0) = 5 [Tl yeny) = (1 35 ) MO o Mol e | =
Thus, in view of (M2), we infer that SUP, sy, ho < 00. O

Now, we recall the following result (see [5,34,39]):

Lemma 4.4. Assume that (f1), (f4)-(f4) hold true. Then:
(i) there exists u € Sy, such that u(-,0) € CY(RYN) N L*®(RY) and radially symmetric;
(i1) Svy is compact in X1 (RYT).

As a consequence of Lemma 4.2, Lemma 4.3 and Lemma 4.4, we obtain that:

Proposition 4.1. Under the assumptions of Theorem 1.2 we have that:
(i) there exists u € Sy, such that u(-,0) € CLRN) N L>(RN) and radially symmetric;
(13) Sy, is compact in leS(RfH).

5. PROOF OF THEOREM 1.1

In light of Section 2, to study (2.2) we look for critical points of the functional I. : X. — R defined as
1~ 1
() = 50T (JulPe. o)) + 5 / V() 0)dr - / Flur,0))dr

where

X = {u € Xbs(RYT) / Vo(x)u?*(x,0) de < oo}
RN

endowed with the norm )
3

R 2 2
fulli= (Il yon, + [ | Velaio,0) )
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It follows from (V7) that X. ¢ X1*(RY™!) and

]| < max{1, Vi }|u|? Vue X..

X1, s(RNJrl)

We denote by (X.)~" the dual space of X, endowed with the norm [T x_y-1 :=sup{Tw : u € X, |lull < 1}.
In order to obtain some convergence results and consequently results of existence for small £ > 0, we need to
modify f(t) once more. Namely, as in [23,32], we consider the following Carathéodory function

ge.t) = xa(@)f(O) + (L - xa@)J(t)  for (2,6) € RN xR,

and we write G(z,t) fo x,7)dr, where xa denotes the characteristic function of A, and
f(t) [ f®) for t < a,
T min{f(t), 2t} fort>a,

where a € (0, 7'0) is such that |f(¢)| < %1t for t € (0,a]. By (f1)-(f2), it is easy to check that:

) = lim;, f(t) = 0 uniformly in 2z € RV,

glz,t) <><oofora11xe]R<N

tP tr

° hmt_)o

e lim sup,HOO < hmsuptﬁoo

Therefore, we consider the following modified problem:

- le( 1=25Vu) =0 in R+,
Qu = —Vou(-,0) + g (-, u(-,0)) inRY, (5.1)

2 1]
M([Jull b(]RN+1))

where we set ge(z,t) := g(ex,t). Obviously, if u. is a positive solution of (5.1) satisfying u.(x,0) < a for
x € RN \ A, then u, is indeed a solution of (2.2). Now, inspired by [13,17,28,32], we define

Je(u) == Pe(u) + Qe (u)

where
Pe(u) = % (HUH RN+1)) + %/RN Ve(z)u®(x,0) dz — = G:(w,u(z,0)) dx
and
2
Qe (u) == (/ Xe (z)u?(x,0) do — 1>
RN +
with

] 0 ifxe A, := ﬁ,
Xe(x) = 5
et ifzd A

The functional Q). will act as a penalization to force the concentration phenomena to occur inside A. This
type of penalization was first introduced in [17]. Clearly, J. € C'(X,,R) and its differential is given by:

/ _ 2 1-2s
) = Mileyen) [f 0= VuTedsty+ [ VoGt 0nte.0)

2

- [ ot et 0o ([ o0z —1) [ et 0)ds

for all u,v € X.. We stress that a critical point of P. is a weak solution to (5.1). In order to find solutions
concentrating in A as € — 0, we look for critical points of J. for which Q. is zero.

1
Let § := I—Odist{M,RN \ A}. By (f3) we can choose § € (0,0) sufficiently small such that

Viz)

F(T) > 5

T2  for all z € M, (5.2)

V\/here
=17 GRN . lllf z — < L? .
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Define a nonincreasing function ¢p € C*°(R;) such that 0 < ¢ < 1, ¢g = 1 in [0,1], ¢ = 0 in [2,00) and
|#6loo < C. In what follows, we look for solutions to (5.1) near the set

E. = {¢0(\/|sx — 224+ e22/B)W(x — (2')€),y) : &' € MP,W € SVO}.
Fix W* € Sy, and define for ¢ > 0 and (z,y) € RY !
Wealen) = oo (SVEET ) W (5.9).

Next we show that J. has a mountain pass geometry [4]. Indeed, by (M1), (V1), (f1), (f2) and Tr(X.) C
LY(RY) for all q € [2,27], we have

23
>0 ||u||X(RN+1 / Vo(e)ul (2,0)dz = & u( 0)ff ~ Celu(- 0) 3

Je(u)

> 1 lull?

Hence, there exist p,d > 0 such that J.(u) > § for ||u|. = p.
On the other hand, using the fact that W* satisfies the Pohozaev identity and (M3), we have

o (037
= [T (I By = (52) 3 (9 By ) I B | = =%,
as t — oo. Then there exists tg > 0 such that

Ly, (W* (E E)) <2 V>t (5.3)
Now we prove the following result:

Lemma 5.1. It holds

sup |J:(Wey) — Ly,(W;)| — 0 as € = 0,
te(0,to]

where Wi (x,y) == W*($,%) fort >0, and W5 =W, =0.

Proof. Since supp(We+(-,0)) C A and supp(x.) C RY \ A, we have Q(W. ;) = 0 and G (z, W, 4(z,0)) =
F(We 4(z,0)) for all £,¢ > 0 and z € RY. Hence, for all t € (0, (]

1~ — 1
ToWe) = Dy W) < AT AWeiliy yon) = M yen) 4 5 [ Vel [ol/8) = Val(W (2,02 do

+/ |F(We(2,0)) — F(W; (2,0))| dx.
RN

Note that as e — 0

|We = HWt*Higs(Rf“) + o(1) uniformly in ¢ € [0, to]. (5.4)

2
’t”XS(Rerl)

Indeed,

IWe,

Xe@yH) ://RNH y' 2 |Vo(e Vil +y?/B) (W* (7 y)) dady
Jr//N+1 - 23‘% \/W/ﬂ ‘ZIVW* (t z)r dzdy
Y
w2 [[ v Vonle VT TRV (5Y) oole VR T8 (.Y deay

= As,t + By + Cs,t'
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Now, by Lemma 2.2, for any ¢ € (0, to] we have

2
A, <C&? // yi=2s (W* (53)) dady
B+ (OO\B*(OO) t 1
-1 _
2y K
cerlff )l [
I B%ﬁ (0,0)\35(0,0) I B;?ﬁ(o,o)\Bé (0,0)
[ 9 T % r 28 17%
7 €
<Ceé // y' =2 (W* (%, %)) dzdy pNH1=2s dr}
I B%(0,0)\Bé(o,o) |1 s
1-2 x y\\> !
<C // y_s<W*(f,f)) dwdy
£ (0.O\5 (0.0) ¢t
-~ N
<C // tN+272sy1725 (W™ (l_’y»?’y dxdy
B, (0,00\B"; (0,0)
: te te :
<C // tNH225 1225 (W (g, y))?Y dady| — 0as € — 0.
RYTIN\BF, (0,0)
L tpe

On the other hand, for ¢ € (0, ¢o], using that 0 <
B [[ o ww (1Y)
’ RN+ t't
< 1 28
< Rf“
tN 25 1— 25
RN+

<

< A1/2 1/2

Et’

Since Holder’s inequality yields C; +

— (9ol v/IaP 97/ 8)) |[vw (
— (¢o(etV/]z]? +y?/8))?

// £ 2y 2 1 = (gole o/l + 42/ B) VW™ (2, )| dady — 0 as & — 0.
Ry

¢o < 1 and ¢q is nonincreasing we get

dxdy

Y

? dud
tt)’ ey

[ [VW* (z,y)|° dedy

we deduce that

sup C.r — 0as € = 0.

1—

2=

19

(5.5)

t€[0,to]
Therefore (5.4) holds true.
Now, noting that [|[We4||% . o~ [WEIR L v, < C for all t € [0,¢0] and € > 0 sufficiently small, and
Xo(RYHY) Xo (RN

using ]/\4\(152)

M(ty) =

S

M(7)dr and (M4

), we see that

(.

which together with (5.4) implies that

XS(RN+1)) -

M (IWetl%. uveny) = 3 (W5

On the other hand, recalling that (see [26]) W*(-,0

,0) <

0<W*(x

M (W 3 e ) | < M

We,

2 sRYHY) HWt*HQ SN+

“||2 s(Rf“)) + o(1) uniformly in ¢ € [0, ¢o].

) has the following polynomial type-decay
C

N
W VJJER,
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we have

Ctév+25
0< Wt (LL',O) < téVJrQS + |£L"N+2S

which together with 0 < V_.(z)¢o(e |z|/F) < max

Ve € RNt € (0, t0], (5.6)

z€l'Y,(0) V(z) and ¢o(e-) — 1 as € — 0, implies that

[ Vewhnte lal/) ~ V)09 (2,00 ds| =0,

lim sup
€20 4¢[0,t0]

Finally, observing that
1
F(a+b) — F(a) :b/ fla+71b)dr,
0
it follows from (f1) and (f3) that

| IPOVil,0)) = POV (2,0)) | do
1
< / W o(2,0) — Wy (2,0)] / POV (@,0) + 7(We s (,0) — Wi (2,0))] drda
RN 0

< C/ (We (2, 0) = Wi (@, O)[[[W (2, 0)| + [We (2, 0) — W (=, 0)]
RN

+ Wy (2, 0)[% 71 + [We g (2, 0) — Wy (,0)% 7] da.
Taking into account We ;(z,0) — W;*(z,0) = (¢o(e |x|/B) — 1) W (x,0), (5.6) and ¢o(c-) — 1 as e — 0, we get

lim sup / F(W,(x,0)) — F(W/(x,0))dz| = 0.
€204c(0,t0] | /RN
O
Notice that from (5.3) and Lemma 5.1 there exists ¢ sufficiently small such that
|Je(Weyto) — Lvg W) < =Ly (Wey) =2 Jo(Wey,) < =2 fore € (0,ep).
Therefore, we can define the minimax level
¢ := inf Jnax J-(7(1))
where
FE = {’7 € C([Oa 1]7X€) : ’Y(O) = Oa’Y(l) = W&to}'
Lemma 5.2. lim._,qc. = cy.
Proof. We first prove that
limsup ¢ < ey,. (5.7)
e—0
Since W, — 0 in X, as ¢ — 0, and setting
Ve(T) 1= We rt,, for 7 € (0, 1], 72(0) = 0, (5.8)
we see that 7. € I'. and thus
< J, t)) = Je(Wet). 5.9
ce < max Je(ve(t)) = max Jo(Wey) (5.9)
By Lemma 5.1, Pohozaev Identity and (M5) we deduce that
J.(Wey) = L (W* (77)) 1
ax =(Wet) max L, 7)) tol)
_ L= N—2s 117+ 12 N(N-2s |2 -y
= max [QM (V=2 W vy ) =t (o ) M (I e vy ) I e vy | + o)
< LVO (W*) + 0(1) =cy, + 0(].)
Next, we show that
liminf e. > cy,. (5.10)

e—0
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Assume by contradiction that liminf,_,oc. < cy,. Then there exist & > 0, €, = 0 and ~,, € ', such that
max;e(o,1] Je, (Yn(t)) < cv, — a. Take &, such that

% en[l + (14 cyy)?) < min{a, 1} and P., (v,(1)) < —2.

2
Denoting ¢, by € and ~, by 7, since P-(y(0)) = 0, we can find tg € (0,1) such that

Ps(’Y(tO)) = —1and P&(W(t)) vt e [OatO]‘

-

Hence,
QE(’Y(t)) < JE(V(t)) +1< vy —a+ 1< cv, + 1
and consequently

/ V(1) dz < £[1 + (1 + ep)?] for ¢ € [0, o).
RN\A.

Since G(z,t) < F(t) we obtain for ¢ € [0, to]

POW) 2 L) =3 [ o e

> Ly, (1(1)) — L el 4+ (1 + e, )

which yields
WV
Ly, (1(to)) < 5 e[l + (1 +ev)?) =1 <0,

On the other hand, the mountain pass level corresponds to the least energy level (see Lemma 3.5), so we
have

max LVo (V(t)) > Cv,-

t€[0,to]
From
—a > L t)) > P.(~(t
Cvp — > max vo (7( ))_tgm] =(v(1))
we get

1%
v, —a>cv0—?0€[l+(1+cvo)2} > ey, —

and this gives a contradiction.
Now, we define

de == = (7:(1)), 11
max J.(12(0) (511)

where 7. is given in (5.8). Then, by (5.7), (5.9) and (5.10) we see that ¢, < d. and
iy = iy = v

This ends the proof of lemma. O

Now we use the notations
Jf ={we X, : J.(w) < b},
and for A C X,
Ab={we X, : ing [lw —v|. < b}.
S
The next lemma will be crucial to prove the main result of this work.

Lemma 5.3. There exists dy > 0 such that for any (g,,) and (we, ) with

lim &, =0, we, € Eg"f, nh_?;(] Je, (we,,) < ey, nh_fgo 12, (we,)

Jim X0 =0,

there exists, up to a subsequence, (z,) C RN, 2o € M and W € Sy, such that

lim |ep 2z, — 2o| =0 and lim |we, — ¢o(en |z — 20l + ¥2/B)W(z — 2, y) ||, = 0.
n—oo

n—o0
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Proof. For simplicity, we write ¢ instead of ¢, and the same will be done for the subsequences. By the
definition of E% and the compactness of Sy, and M?, there exist W, € Sy, and (x.) C M?# such that for

all € > 0 small enough
€ Te |2
We — ¢g (3 'zf —;

T — xo € MP.

< 2dy, (5.12)

and, as ¢ — 0,

In what follows, we prove that there exist (we 1), (we,2) C X, (k.), (je) C N such that
() ke < /Be/beand k. >0 ase = 0,0 < j. <k.—1, |we|, |wez| <|wel,

(i) we = we in B(J;[;E)Jr(sjaﬂ)ks(%,o), Wy = w, in RN+1 \B(%H(rg e (2=,0)
N+1 ..
(i) supp(wes) C Blase, ;. 4oy, (%00 supp(wen) CRETN Bl ) g, (5,0),
() |lwe —we 1 — w5,2|| —0ase—0,
(v) llwellxg(m,. ) — 0 and

// y 72w |V daedy — 0 as € — 0,
B

Jes€

where
. . + Te + &
Biee = Blase s 41, ( ’0) \B(%Hfm‘aks ( £ ’O) ’
and
/ Vo(2)]we (2, 0)2 dz — 0 as £ — 0,
Fjst
where

. ._T0 Le 0 Ze
Tjese 1= F(%Hsm‘ﬁl)ka ( € ) \F(%)%ME ( c ) ‘

Let k. € N be such that k. < \/é and k. — oo as ¢ — 0, and put w.(z,y) := w.(z + ==,y). By (5.12),
Lemma 2.2-(i) and ¢o(e /|22 +y2/B) = 0 in RY !\ B, (0,0) we have

// 1—2s|vﬁ)5|2 dxdy—i—/ V(E$+$e)|ws(xa0)|2 dx
N+1\B (0,0) ]RN\FOE (0)

1

// y T [P dedy | < Cdo. (5.13)
RNJrl\B% (0,0)

For all j =0,1,...,k. — 1, we set

Bj’g = _B+ ( )\B 2[35 )5k (0,0) and f‘j,g = F02

0
(P22)+5(i+1)ke e snn O N Diaze i, (0)-

From (5.13) we deduce that

ke—1

Z // 1228 W, |? dady + Z/ V(e + z.)|we(x,0)|* dx

1
+ Z ( / / y' [P dxdy) < Cdy.
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Hence, there exists j. € {0,1,...,k: — 1} such that

// e 23|Vw5|2 dwdy—l—/ V(ex + xe)|we(z, 0)|2 dx
B 155

o

(// e (A dzdy) < Cdy/ke = 0as € — 0. (5.14)

Define two cut-off functions (&,1) and (£ 2) such that

in B, 0,0),

24 (5 +1)k (
in RY N+ \ B 2“_(5 2k (0,0),

and

in RY N1 \ B% + (5 + 4)k.(0,0),

{ in BMH5 k. (0,0),
< and we set

and0<§517£€2<1 ‘Vgall |v§£2 kg

T
We i 1= & iWe and we ;(x,Y) = We ; (J: - =, y) fori=1,2.
€

Since w. € X, we see that w.; € X., for i = 1,2. Hence, (7)-(49¢) hold true. Now, direct calculations show
that

[we — wey —we o2 < C'// y' 72|V, |? dady
(0,0\B7, (0,0)

28 1 (5jc+4)ke 2B | (5jc+1)ke

—|—C/ V(ex + x.)|w.|? dox

0 0
2B 4 (55 +4)ke A 2ﬁ+<>15+1)k5( )

* C// Y (Ve i 2 dady
0.0\B}, 0,0)

2B+<515+2)k 2B 4 (5je+1)ke

1-2 2~ |2
—|—C'//+ . y P VEe o] | We | dady
B 0,0\B 0,0
?+(515+4)k5( N %+(515+3)kg( )

= ([)e+ {UD)e+ III)c+ (IV)e.
Using (5.14) we deduce that (I)c, (IT). = o(1). Moreover, arguing as in (5.5), it follows from (5.14) that

5

(IIT). < C / / y 725w |2 dady

(0,0\B7, (0,0)

o(1).

25 +(5jc+2)ke 2B | (5jc+1)ke

In a similar fashion we can prove that (IV). = o(1). In conclusion, (iv) holds true. Moreover, by (5.14), we
see that (v) is satisfied. Taking into account (i)-(v), (f1)-(f2) and the boundedness of (w.) in X, we get

)+ o(1), (5.15)

/ Ve(z desr:—/ Ve(z)w? (%,0) dx + Ve(@)w? 5(x,0) dz + o(1), (5.16)
RN

/ Flw.(z,0)) dz = F(w€71(x,0))dx+/ Flw. s(x,0)) dz + o(1). (5.17)

By (M1), we know that

. . titts _
Mty + t2) = M(t) + / M(r)dr > V(1) + mots,
t1
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which together with (5.15)-(5.17), the boundedness of (w.) in X, and G(x,t) < F(¢) implies that

m 1
Je(we) > I(we 1) + 70Hw5,2||§(5(RN+1) + 3 /N Vg(m)w?Q(m, 0)dx — /N F(we2(z,0))dz 4+ o(1). (5.18)
R R

Now, we prove that ||we 2|l — 0 as € = 0. By (5.12), (iv) and the definition of w. 2, we see that

15 Te |2 9 Te
le2lle < flwes =60 | Gy/le = =] 02 | Wo (v = Z,0) || +2do+0(1)
€
15 Te 2 Te
we,1 — ¢o <,5 ‘x—? +y2> Wo (96—?»?,/) + 2do + o(1)
+
Xe (B%HSJEHME(O’O)
< Jlwe 2 +2dy + o(1)
X[ BT (0,0)
2B (5jc+2)ke
= 4d0 + 0(1)7
which yields
lim sup ||we 2]|e < 4dp. (5.19)
e—0

On the other hand, using (J.(we), we 1) = 0(1), (QL(we), we 2) = (QL(we,2), we 2) > 0, (M1), (V1), (f1)-(f2),
(1), (iv), (5.19), the boundedness of (w,) in X., we get

mo y' 2| Ve o|* dedy + Ve(2)w? 5(z,0) dx
Rerl ’ RN &
< () [ / Ve dedy+ [ Vilehuy(o0)do
< M(JJwe||?) //N+1 1728V, 5|2 dedy + o Ve(z)w?2 5(x,0) dz + (Q' (we,2), we 2)

/ (x, we 2(x,0))we 2(x,0) de + o(1)

5/ w? 5 (x,0) do + C(;/ lwe 2 (2, 0)]% + o(1)
) *
<o [ Ve@)uly(2,0)da + Cslwe (2, 0) 5 + o(1).
1 JRN s

Then, choosing § > 0 sufficiently small and using Lemma 2.1 we deduce that |Jw.2||? < C’Hw&gH? + o(1).
Taking dy > 0 small enough, we deduce that ||we 2| = o(1). Hence, in view of (5.18), we have

Je(we) > I (we 1) + o(1). (5.20)
Up to a subsequence, we can find @ € X5(RY ™) such that

Wep — win XVH(RYT) and 1. 1 (-, 0) — @(-,0) in LY

RY) Vvge1,20). (5.21)
In what follows we show that
e 1(-,0) = @(-,0) in LYRY) Vg e (2,27). (5.22)

Indeed, by vanishing Lions-type lemma (see Lemma 3.3 in [36]), we assume by contradiction that there exists
r > 0 such that

liminf sup / e 1 (,0) — (z,0)|? dz = 2r > 0.
r9(2)

e—0 2ERN

Then, for € > 0 small, there exists z. € RV such that

/ e 1 (2,0) —w(z,0)]* dx > r > 0. (5.23)
r (ZE)
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By (5.21) we see that (z.) is unbounded, so, up to a subsequence, |z:| — co. Then, by (5.23),

e—0

lim inf/ e 1 (2,0)* dz > 7 > 0. (5.24)
F(l)(ZE)

Since & 1(z,0) = 0 for |z| > (%) + (5jc + 2)k., we deduce that |z.| < (%) + (5jc + 3)ke for £ > 0 small
enough. Therefore, we may assume that
E2e = 29 € @(0) and @ (z,y) = W1 (T + 22, y) = W(x,y) in XHIRYT). (5.25)

Now, we show that w satisfies

—div(y'~2*Vw) = 0 in RY T,

L 90 — V(2o + 20)@(-,0 0(-,0)) in RY (5.26)

ao Ovi—2s — 0 20 w( ) ) + f(w( ) )) mn )
where

0 1= lim M (el o))
Fix k > 1. Since zg + 29 € M* C A, there exists ng = ng(k) € N such that ex + 2. + 2. € A for all
z € T'{(0) and n > ng. By the definition of x. and g(z,t) it follows that
(Qwo)o (== —2)) =0and glex +a. +22.8)0 = f(1)9,

for all n > ng and ¢ € C°(B;F(0,0) UTH(0)). From (J.(we), d(- — 2= — z.)) = o(1), (iv) and |jwe 2| = o(1)
we can deduce that

o(1) = M(||w5||§(3(Rf+1)) //]RNJrl y TV Ve dedy
+

+ / V(ex + x. + e z.)w(z,0)p(x,0) de — f(@e(z,0))é(z,0) da.
RN RN

Note that by (M1) and the boundedness of (w¢) in X, it holds mg < ag < C. Then, by (5.25) and the
arbitrariness of k we get

0=aqp //RN“ y' VoV drdy + V(zo + z0)w(z, 0)p(x,0) de — f(w(z,0))é(x,0) dx,

RN RN

for all ¢ € C’go(]Rf 1), which proves the claim.
Since w # 0 by (5.24), it follows from the Pohozaev identity that

s el —
dV(zoJrzo) < NQO N+ yl * va‘2dxdyv (5.27)
+
where
dv(moﬂo) = inf{LaO’V(woﬂo)( Yiu€ XL S(RN+1) \ {0} : ao,V($o+Zo)( u) = O}
and v )
o + 20
Loy, v (zo+20) (1) == o ||u||X S+ + #/ u?(z,0) dz f/ F(u(z,0)) dx.
RN RN

We observe that, by the results in [7], it turns out that dy (5,4 ,) > 0. Then, for R > 0 large enough we get

lim inf —ao // y' 7|V, |* dedy = hmmf —ao // y' 7|V, 1| dady
=0 B (ze+(%), ) B (ze+( zs)0)
= hm mf —ao // y' 7|V, |* dedy
B1(0,0)
> —ao // y' 2|\ V| dedy
N B (0,0)

1
> fiozo // Yt 25| V| dedy
2N RN+

1
> idV(zoJrzo) > 0.
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On the other hand, arguing as in (5.5), it follows from (5.12) and |z.| — oo that

ao // y' | Ve * dedy
B}, (2-+(%),0)

coff e (o (e E ) - 2)

< c// y' 7|\ VW |2 dedy + C &2 // y' 72| Wo|? dady + Cdy
B} (2:,0)

B} (2¢,0)

2
dzdy + Cdy

1

2y
< C// y 2| VW |? dedy + Ce® R? // y 2 WP dady |+ Cdy
B} (2.,0) B (22,0)

= Cdy + o(1)

which leads to a contradiction for dy > 0 small enough. Consequently, (5.22) holds true.
Then, by (f1)-(f2) and (5.22), we have as ¢ — 0

/ F(we1(x,0)) de — F(w(z,0)) dz and / f(We,1(x,0))0e1(x,0) dz — f@(z,0)w(x,0)dz.
RN RN

]RN ]RN
(5.28)
Moreover, we can see that as e — 0
/ g(e @ + we, 0 (@,0))ibe1 (2,0) da — | F(i(x, 0))i(w,0) da. (5.20)
RN RN

Indeed, using . — xo € M? C A and the definition of We,1, for all x € R we have

2 4 5.2k, ()
glex + zo, We(2,0))We 1(x,0) = f(We(z, 0))we 1 (x,0), (5.30)

since ez + . € M* C A for all z € F%+(5je+2)k5 (©)

€

and € > 0 small. Furthermore, as ¢ — 0

- f(@e(x,0))We1(2,0) dr = o f(We,1(x,0))We 1(z,0) dr + o(1), (5.31)

because (f1),(f2) and (5.22) yield

fimsup | [ [£(@(2,0)) = £ (2.0} (2,0) de
e—0 RN
— limsup / [ (-(2,0)) — [(e 1 (w,0))]ibe 1 (, 0) da
e=0" |Jry (AT

0
2B 4 (5je+2)ke 28 1 (5je+1)ke

< 6C + Cslimsup ‘1[15,1(', O)|Lp+1(]RN\FOWE(O))

e—0 2

<6C +Cs

lim sup |we 1 (-, 0) — @(-, 0)|p+1 + limsup/ |@(x,0)[PT da
c050 RN\LY,, (0)

e—0

=46C V6>0.

Gathering (5.28), (5.30) and (5.31) we get (5.29).
Now, we note that, arguing as before, w satisfies

L 80 = V(wo)d(,0) + f(@(,0) inRY, :

with
Qo = ;%M(HWEHQ s(Rf“)) = Eh_rf(l] M(””‘“EJH?}@@&f“Q = ;i_r)l(l)M(H@sJ”?(s(Ri’“))v

where in the second identity we used that ||w. — we 1||e = o(1) thanks to (iv) and ||we 2|l = o(1), and in the

Ze

third one that . 1(7,y) = we 1 (2 + %=, y).
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Taking into account (5.21), (5.29), (5.32), (iv) and (Jl(w.),we 1) = o(1), ||we2lle = 0o(1), (QL(we), we1) =0
and W 1(z,y) = we 1 (7 + %=, y), we have

ao// ylfzs\Vﬁ)szder/ V(20)w?(x,0) dx
RN+1 RN
o

< limipt [M(stn;wﬂ)) [y ey [ View it o0 is ]
< timsup | M (el yon) [[ 0 H Vol dedy+ [ Vot )i (@.0)da
e—0 + Rf*l RN

= lim sup M(||w5||§(s(RN+1))// y' T Vw V. dxdy+/ Ve(z)we(z,0)we 1 (2, 0) dz
e—0 + Ri\’*l RN

= limsup/ ge(z, we(2,0))we 1 (x,0) dz
RN

e—0

= lim glex + xe, W (2,0))We 1 (x,0) dz

e—0 RN

= fo(z,0)w(z,0)de
RN

:ao// y1*25|VﬁJ|2dazdy+/ V(20)i? (z,0) do
Rf+l RN

which yields

lim // y' 7| Vw, 1|? dzdy = lim // y' 7|V 1 |? dedy = // y 25| V| dedy (5.33)
e—0 Ri’+1 e—0 ]RiH»l ]Rf*l

and

lim V(ex)w gl(x 0) dz = lim V(ex +z)w ?1(33 0) dx —/ V (20)w?(x,0) d. (5.34)

e—=0 Jpn e=0 Jpn RN
In particular,
a0 = M(J ) o))
Putting together (5.20), (5.28), (5.33), (5.34) we deduce that
lim inf . (we) > T inf T (1e.1) > Ly () (10)

which combined with (5.12) gives
Ly () (W) < cv.-
Since @ # 0, it follows from (5.2) that
Ly (a0) (0) Z v (y)-

Then, using the fact that o € M? C A, the above inequalities and the monotonicity of m + ¢,, (see Remark
3.1), we have that V(zg) = V; and thus xg € M. At this point, it is clear that there exist W € Sy, and
20 € RN such that w(x,y) = W(x — 20, y).

On the other hand, observing that

V(zo) =Vo < V(ez+z.) on F%—M(w +2yr, (0);

we combine (5.33) with (5.34) to infer that w.; — @ in X**(RY ') as ¢ — 0, which implies that

v (Sl () o) w (o= (2420 0)

This ends the proof of lemma. O

=0.

€

lim
e—0
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Corollary 5.1. For any d € (0,dy) there exist constants w > 0 and €4 > 0 such that ||J(w)||(x.)-+ > w for
w € Jd N (Edo\ EY) and ¢ € (0,e4). Here d. is defined as in (5.11).

Proof. Assume by contradiction that there exist d € (0,dp), (¢,) and (w,,) such that

1 0 1
sne(o,n), wo € T OB\ BL), I, ()., <

By Lemma 5.3, we can find (z,) C RY, g € M and W € Sy, such that

lim |&, 2z, — To| =0 and li_>m lwn — dolen VT — 202 +¥2/B)W (2 — 21, 9)]le, =0,

n—o0
which imply that w,, € Egn for n sufficiently large. This is impossible because w,, € Egg \ Egn. g
Lemma 5.4. Given A > 0 there exist eg > 0 and dy > 0 small enough such that

J.(w) >cy, — A forallw e E®  and ¢ € (0,¢).
Proof. If w € E. then there exist W € Sy, and 2’ € M? such that

w(w,y) = go(V]ex — 2’2 + 22/ )W (& — (a'/ ), y).
Using Ly, (W) = cy,, (V2) and G(z,t) < F(t) we get

17—~ — Vi
Je(w) — > 5 [M(H'UJHQ S(]Rf‘*'l)) - M(”WHi(s(Rf-H))] + ?0 /]RN<¢%(€ |$|/ﬁ) - 1)W2(£C,0) dx

- [ PGl /AW (2.0) = POV (2.0) da
independently of 2/ € MP?. Arguing as in the proof of Lemma 5.1, we can see that there exists ¢y > 0 such
that
A
Je(w) — ey, > —3 forallw e E. and € € (0,g9).

Now, if v € EY, then there exists w € E. such that ||w—v]||. < d. Hence, v = w+ z with ||z||. < d. Observing
that Q. (w) = 0, we have

To(0) = Tow) = 5w+ 2 B yony) = Ml o)+ 5 [ V@)l (0(,0)+ 2(2,0) = w?(a,0)] da

2 2
- Ge(z,w(z,0) + 2(2,0)) — Ge(z,w(z,0)) d.
]RN
Since E. is uniformly bounded for £ € (0,e9) (see the estimates in the proof of Lemma 5.1), we obtain that
for e € (0,¢0)
llw + 212 = lwl| 2] < [|2]12 + 2w ]|z]lc <d*+Cd — 0as d— 0.

Moreover, noting that M (ts) — M(t;) "2 M(7)dr and (M5) yield

:tl

7 2 T 2 2
IV (lw + 21 yen) = Ml )l < MO + 23 gy = 12 = 0asd—0,

2
HXS(Rf+1
we can find dg > 0 small enough such that

A
Je(v) > Je(w) — 5>~ A YoeED Vee(0,e).
This ends the proof of lemma. O

By Corollary 5.1 and Lemma 5.4, we fix d; € (0, %) and corresponding w > 0 and ¢y > 0 such that, for
any € € (0,5()),

[J2(w)|[(xy-1 = w  for all w € Jd N (B \ £X)

J.(w) > % for all w € E%.
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Lemma 5.5. There exists a > 0 such that

[t — 1/to| < a implies that v.(t) € E for all € € (0, ),
where . is given by (5.8) and ty was chosen in (5.3).
Proof. Firstly, we note that there exists Cy > 0 such that

o (5777):

3 < Collvll 1. g1y Ve €(0,00) Ve Xt (RYT).

Since the map 1 : [0,to] — Xl’s(RfH) defined as 1 (t) := W;* is continuous, we can find ¢ > 0 such that
|Wy — W*”Xl,s(RiH) < d—t whenever |t — 1| < 0. Hence, if |ttg — 1| < o, then |t — %| < ¢ =t and this

€

C
yields
€ * * * *
et = Wealle = |0 (SVEFH3) (s, = )| < ollWi, = W sy < .
g
Since W, 1 € E. (recall that 0 € M and W* € Sy,), we deduce that v.(t) € Ed. O

Lemma 5.6. For a given in Lemma 5.5 there exist p > 0 and g9 > 0 such that
Jo(e(t) < cvy —p, forany € € (0,e9) and |t — 1/to] > .
Proof. By (M5) and (5.3), we know that ¢ = 1 is a maximum point of Ly, (W;*) in [0, %] (see the proof of
Lemma 3.5). Then, we find p > 0 such that
Ly,(W}) < ¢y, — 2p for |t — 1| > tpa.
On the other hand, by Lemma 5.1, there exists g > 0 such that

sup |Je(We ) — Ly, (W;)| < p for € € (0,&9).
te[0,to]

Consequently, for |t — 1| > toar and € € (0, &), we have
Je(Weyr) < Ly, (WY) + [Je(Wepp) = Ly (W)l < evy, =20+ p = cy, — p.
O

In the light of Lemma 5.5 and Lemma 5.6, we can argue as in the proof of Proposition 5.2 in [32] (see
also [13,28,35]), to obtain the following result that we state without giving the details.

Lemma 5.7. There exists £ > 0 such that for all € € (0,2 there exists a sequence (wy, ) C Jd=+eN Ed such
that J.(wn.e) — 0 in (X:)™t as n — oo.

Now we are ready to give the proof of the main result of this section.

Proof of Theorem 1.1. By Lemma 5.7, there exists € > 0 such that for all € € (0,Z] there exists a sequence
(wpe) C J&Fe N Ed such that J.(wy) — 0in (X:)~! as n — oo. Since (wy ) is bounded in X., up to a
subsequence, as n — 0o, we have

Wye — we In X, (5.35)

and
e i= (/ Xe(z)w? _(x,0) dx — 1) - A (5.36)
RN ’ +
Then, it is easy to verify that

{ —div(y'=?*Vw,) =0 in RY+,

. 5.37
O% 33}07525 = —Vewe(+,0) — 4Aexcwe(+,0) + g= (v, we(-,0))  in RNa ( )

where
R 2
Qe 1= nh_{r;o M(Hwnyfnxs(mi\_’*’l))'
By (M1), (M4) and the boundedness of (wy, ) in X, we know that
mo < a. <C Vee(0,E]. (5.38)
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Next, we show that (w, ) is tight in X*(RY ") (see definition 3.2.1 in [25]). To prove this, for all fixed

€ (0,2, take R > 0 such that A. C T'%(0), and set ¢r(x,y) = ¢(y/[z[> +y?/R) where ¢ € C(Ry) is
such that ¢ = 0 in [0,1], ¢ = 1 in [2,00), 0 < ¢ < 1 and \gb’\oo < C. Since (¢prwn ) is bounded in X, for
each ¢ € (0,2], we deduce that (Jé(wns) PRWpc) — 0 as n — 00, and so, by the definition of g., we get

a / / YV, Por dady + / Vo(@)u? (x,0)¢r(z,0) do
Rfﬂ RN ’

1
<3 ‘/E(x)wQ a(x70)¢R(x70) dr — e yl_stn eV :Vog drdy. (539)

2 RN e Rf+1 ’ 5
Arguing as in (5.5), and using Holder’s inequality, (5.38), (5.35) and Lemma 2.2-(ii), we get

lim sup
n—oo

< —hmsup // y' 7|V, . |* dedy // y' 7wy, o |? dady
n—00 N“ B, (0,0\B}(0,0)
%
// 172s|w€|2 d:z:dy
BF,(0,0\B}%(0,0)

1

Qe / / y % w, Vw, Vo drdy
N+1

[N

2y

<C // y' 725w, [*Y dedy — 0 as R — oc. (5.40)
B (0,00\B(0,0)

Putting together (5.38), (5.39) and (5.40) we obtain

R—o0 n—o00

hm lim sup //N . I*QS\an’E\dedy—i—/ Vs(x)wzys(n()) dr =0, (5.41)
1\ B ;(0,0) RN\T§,(0)

which implies that (wy, ) is tight in X.. In particular, by (5.41) and the compactness of H*(RY) c L? (R"),
we deduce that w, c(-,0) = w.(+,0) in L?(RY) as n — oco. Hence, by interpolation, w, .(+,0) — w(-,0) in
LYRYN) for all g € [2,27). By the definition of g., (f1)-(f2), we have as n — oo

/]RN ge (@, wp e (2,0))wy, (2, 0) de — - ge(z, we (2, 0))we (z,0) de. (5.42)

In the light of (5.35), (5.37), (5.42), (J.(Wn,e),wn,c) — 0 and arguing as at the end of the proof of Lemma
5.3, we deduce that

Wp e = We in X as n— 00, @ = M(||w5||§(s(Rf+l)) and A\, = (/ Xe(z)w? (x,0) da — 1) . (5.43)
RN i

Since Sy, is compact in X1*(RYT!), it is easy to check that 0 ¢ Ed for ¢ > 0, dg > 0 small. Hence,
we € B N J%%¢ is a nontrivial solution to (5.37).

Now, for any sequence (&,,) such that €, — 0 as n — oo, by Lemma 5.3 there exist, up to a subsequence,
(zn) CRY 29 € M and W € Sy, such that

lim |ep 2, — 20| =0 (5.44)

n— oo

and
nlglgo lwe, — dolen Vl|x — 202 + 42 /B)W (2 — 2, y) e, =0,

which implies that
i [, = Wl vy =0, (5.45)
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where W, (x,y) := we, (€ + zn,y). In view of (5.37), (5.38), (5.43) and (5.45), we can use a Moser iteration
scheme (see for instance [6,11,25]) and repeat the same arguments in [3,9,11,37] to deduce that

‘ llim We, (2,0) = 0 uniformly for e, small, (5.46)
T|—00

which guarantees the existence of a constant p > 0 such that f(i@.,(z,0)) < 2., (z,0) for all |z| > p and
en small. When |z| < p, it follows from (5.44) that I'? (e, 2,) C A for &, small enough, and so

9e, (@ + 2z, We, (2,0)) = f(we, (z,0)) for &, small. (5.47)

From (5.46) and (f1), we can find R > 0 big enough such that
f(we, (2,0) < =V(en 4 en 20) e, (2,0) for 2 € RN \ T%(0).

On the other hand, arguing as in [3,8,9], we see that

N |

|, (x,0) for e, small,

< - -
| < 1+ [o|N+2s

for some C' > 0 independent of €,. Then, noting that RV \ (A., — z,) C RV \ T'% (0), we obtain

e;l/ w? (z,0)dz = 6;1/ w? (x,0)dx
RN\AETL RN\(Asn,fzn)

1
<Cet / 1
RN\I', (0) (1 + [w|N+2s)2

€n

dxr — 0 as n — oo,

which implies that Q. (we, ) = 0 for £, small enough. This together with (5.47) implies that w,, is a solution

o (2.2). Hence, u., (2) := w., (Z=,0) is a solution to (1.1). Since u. € L>®(RY), u. > 0in RY, V and f are

continuous functions, and using (M1), from the Harnack inequality [19,33] we have that u. > 0 in RV.
Now, let P, be a global maximum point of @, (-,0). Since @, solves (5.1) with V. replaced by V. (-+zy,),

it follows from (V1), (f1)-(f2) that

% e, (5 0)13

which implies that |@., (-,0)]cc > § > 0 for all n € N. Then, w,, (P,,0) > > 0 for all n € N, and (P,) is

bounded by (5.46). Noting that u., (z) = wg(ei — 2, 0), we deduce that x,, := e, P, + €, 2, is a global

maximum point of u. . From (5.44) we get x,, — o € M as n — oo. Finally, we can argue as in [8,9,37] to

deduce the polynomial decay of wu..

Vilae, (-, 0)3 < —-le, (-, 0)[3 + Cla., (-, 0)

O
6. PROOF OF THEOREM 1.2
This section is devoted to the proof of Theorem 1.2. We borrow some arguments used in [50].
In view of Proposition 4.1 there exists x > 0 such that
sup |u(+,0)|eo = sup |u(+,0)|o0 < K. (6.1)
u€Sv, u€§v0
For any k > max¢(o,x f(t), define fi(t) := min{f(¢),k}. Now, we consider the truncated problem
2 M Nu)(~A)u + V()u = fy(u) in RY, 62)
uec H5(RYN), u>0 in RV, ’

In what follows, we prove that, for small ¢ > 0, there exists a positive solution v, to (6.2) satisfying the
properties of Theorem 1.2. Clearly, v. is a solution to (1.1) if |v.|oo < k. We consider the limiting problem
{ M([u]?)(=A)u+ Vou = fr(u) in RV,

S

u€ H¥RY), u>0 in RV, (6.3)
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and the corresponding extended problem

—div(y' ~2*Vw) = 0 in RY !,
1 ow ~Vow(-,0) + fe(w(-,0)) in RV, (6.4)

M 2 ovl—2s
Mol yer) 2

whose associated energy functional is given by
1

—~ Vi
k 2 0 2
L, () = S M (Jul} o) + 5 (- 0)3 / _ Fi(u(x,0)) dz.

Lemma 6.1. Under the same assumptions of Theorem 1.2, (6.4) admits a positive ground state solution.

Proof. Firstly we show that fi satisfies (f1)-(f3). It is clear that (fi)-(f2) are true. Now, for any u € Sy,
we know that wu fulfills the Pohozaev identity
N —2s Ve
Sl ey = N/RN F(u(,0)) ~ 2u2(2,0) da,
which yields

Flu(z,0)) — Lu2(z,0) dz > 0.

. 2
If Fu(z,0)) — %uz(x,O) < 0 for all x € RY, then % = Vo > 0 for all z € RY. Using (f{) and
that u(z,0) — 0 as |z| = oo, we get qu;‘f;”g)” — 0 as || — oo, that is a contradiction. Then, we can find

zo € RN such that F(u(zo,0)) > 2u?(20,0). Since |u(zg,0)| < &, it follows that F(u(z,0)) = F(u(z,0))
for all x € RY. Hence, letting T = u(x,0) > 0, we obtain that Fj(T) > %TQ, that is (f3) is satisfied.
From [7,16,51] we know that

(=A)*u+ Vou = fr(u) in RY

admits a radially symmetric ground state solution. At this point, we apply Lemma 3.7 to deduce the
assertion. O

Let Sf be the set of ground state solutions u to (6.3) such that u(0,0) = max,cp~ u(z,0). Then, by
Lemma 6.1 we deduce that S, # 0.

Lemma 6.2. For k > maxc[o,.) f(t), we have
St = Sv.

Proof. In the light of Lemma 4.1 and Lemma 4.2 it is enough to prove that §‘k/0 = gvo. This is proved in
Corollary 4.3 in [39]. O

Now we provide the proof of the main result of this section.

Proof of Theorem 1.2. Since f, satisfies (f1)-(f3), we can invoke Theorem 1.1 to deduce that, fixed k >
maxyco . f(t), there exists g > 0 such that (6.2) admits a positive solution v, for ¢ € (0,&0). Moreover, there
exists U € S‘k/o and a maximum point z. of v, such that lim._, dist(z., M) =0 and v.(e -+ z.) = U(- + 29)
as € — 0 in H*(RY), for some zy € RY. Letting w. = v.(e- + x.) we see that w. satisfies

2 _ANS & _ : N
M (el s J(=A) we + Ve (24 ) we = flw.) in RY.

Clearly,
mo < inf Ml gyen) € sup MO, goyin) < o

e<eo e<e
Then, we can argue as in Step 2 of the proof of Theorem 1.1 in [39] and use Lemma 6.2 to infer that there
exists €* > 0 such that |v.| < & for all € € (0,€*), which implies that fi(v.) = f(ve) in RY. In conclusion,
ve is a positive solution to (1.1). O



(1
2]
3l
[4]
(5]
[6]
(7]
(8]
[l
(10]
(11]
(12]
(13]
(14]
(15]
[16]
(17]
(18]
(19]
(20]
21]
22]
23]
(24]

[25]

[26]
(27]
(28]
29]

(30]

FRACTIONAL KIRCHHOFF EQUATIONS IN RY 33

REFERENCES

F. J. Jr. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2
(1989), no. 4, 683-773.

C.0O. Alves, F.J.S.A. Corréa and G.M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ.
Equ. Appl. 2 (2010), no. 3, 409-417.

C. O. Alves and O. H. Miyagaki, Ezistence and concentration of solution for a class of fractional elliptic equation in RN
via penalization method, Calc. Var. Partial Differential Equations 55 (2016), no. 3, Art. 47, 19 pp.

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional
Analysis 14 (1973), 349-381.

V. Ambrosio, Ground states for a fractional scalar field problem with critical growth, Differential Integral Equations 30
(2017), no. 1-2, 115-132.

V. Ambrosio, Multiplicity of positive solutions for a class of fractional Schrédinger equations via penalization method,
Ann. Mat. Pura Appl. (4) 196 (2017), no. 6, 2043-2062.

V. Ambrosio, Mountain pass solutions for the fractional Berestycki-Lions problem, Adv. Differential Equations 23 (2018),
no. 5-6, 455-488.

V. Ambrosio, Concentrating solutions for a class of nonlinear fractional Schrédinger equations in RY | Rev. Mat. Iberoam.
35 (2019), no. 5, 1367-1414.

V. Ambrosio, Concentrating solutions for a fractional Kirchhoff equation with critical growth, Asymptotic Analysis,
doi:10.3233/ASY-191543.

V. Ambrosio and T. Isernia, A multiplicity result for a fractional Kirchhoff equation in RN with a general nonlinearity,
Commun. Contemp. Math. 20 (2018), no. 5, 1750054, 17 pp.

V. Ambrosio and T. Isernia, Concentration phenomena for a fractional Schrodinger-Kirchhoff type equation, Math. Meth-
ods Appl. Sci. 41 (2018), no. 2, 615-645.

H. Berestycki and P.L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal.
82 (1983), no. 4, 313-345.

J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrédinger equations with a general nonlinearity, Arch. Ration.
Mech. Anal. 185 (2007), no. 2, 185-200.

J. Byeon and L. Jeanjean, Multi-peak standing waves for nonlinear Schrodinger equations with a general nonlinearity,
Discrete Contin. Dyn. Syst. 19 (2007), no. 2, 255-269.

J. Byeon, L. Jeanjean and K. Tanaka, Standing waves for nonlinear Schridinger equations with a general monlinearity:
one and two dimensional cases, Comm. Partial Differential Equations 33 (2008), no. 4-6, 1113-1136.

J. Byeon, O. Kwon and J. Seok, Nonlinear scalar field equations involving the fractional Laplacian, Nonlinearity 30 (2017),
no. 4, 1659-1681.

J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrédinger equations II., Calc. Var.
Partial Differential Equations 18 (2003), no. 2, 207-219.

C. Bréndle, E. Colorado, A. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian,
Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), no. 1, 39-71.

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, mazimum principles, and Hamiltonian
estimates, Ann. Inst. H. Poincaré Non Linéare 31 (2014), no. 1, 23-53.

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equa-
tions 32 (2007), no. 7-9, 1245-1260

X. J. Chang and Z.Q. Wang, Ground state of scalar field equations involving fractional Laplacian with general nonlinearity,
Nonlinearity 26, 479-494 (2013).

J. Davila, M. del Pino, and J. Wei, Concentrating standing waves for the fractional nonlinear Schrédinger equation, J.
Differential Equations 256 (2014), no. 2, 858-892.

M. Del Pino and P.L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var.
Partial Differential Equations, 4 (1996), 121-137.

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136
(2012), no. 5, 521-573.

S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of R™, Appunti.
Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)|, 15.
Edizioni della Normale, Pisa, 2017. viii+152 pp.

P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrédinger equation with the fractional Laplacian,
Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1237-1262.

G.M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument,
J. Math. Anal. Appl. 401 (2013), no. 2, 706-713.

G. M. Figueiredo, N. Ikoma, and J. J. R. Santos, Existence and concentration result for the Kirchhoff type equations with
general nonlinearities, Arch. Ration. Mech. Anal. 213 (2014), no. 3, 931-979.

G.M. Figueiredo and G. Siciliano, A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a
fractional Schrédinger equation in RN, NoDEA Nonlinear Differential Equations Appl. 23 (2016), art. 12, 22 pp.

A. Fiscella and P. Pucci, Kirchhoff-Hardy fractional problems with lack of compactness, Adv. Nonlinear Stud. 17 (2017),
no. 3, 429-456.



34

[31]
[32]
33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]

[44]
[45]

[46]
[47]
[48]
[49]
[50]
[51]

[52]

V. AMBROSIO

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. 94 (2014),
156-170.

E. Gloss, Ezistence and concentration of bound states for a p-Laplacian equation in RN | Adv. Nonlinear Stud. 10 (2010),
no. 2, 273-296.

T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions,
J. Eur. Math. Soc. (JEMS) 16 (2014), no. 6, 1111-1171.

Y. He, Singularly perturbed fractional Schrodinger equations with critical growth, Adv. Nonlinear Stud. 18 (2018), no. 3,
587—611.

Y. He and G. Li, Standing waves for a class of Kirchhoff type problems in R3 involving critical Sobolev exponents, Calc.
Var. Partial Differential Equations 54 (2015), no. 3, 3067-3106.

X. He and W. Zou, Ezistence and concentration result for the fractional Schridinger equations with critical nonlinearities,
Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 91, 39 pp.

X. He and W. Zou, Multiplicity of concentrating solutions for a class of fractional Kirchhoff equation, Manuscripta Math.
158 (2019), no. 1-2, 159-203.

J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in RN : mountain pass and symmetric mountain pass
approaches, Topol. Methods Nonlinear Anal. 35 (2010), 253-276.

H. Jin, W. Liu and J. Zhang, Singularly perturbed fractional Schrédinger equation involving a general critical nonlinearity,
Adv. Nonlinear Stud. 18 (2018), no. 3, 487-499.

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305.

P. L. Lions, Symetrié et compacité dans les espaces de Sobolev, J. Funct. Anal. 49 (1982), no. 3, 315-334.

X. Mingqi, V. D. Radulescu, B. Zhang, Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity, Calc.
Var. Partial Differential Equations 58 (2019), no. 2, Art. 57, 27 pp.

G. Molica Bisci, V. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge Uni-
versity Press, 162 Cambridge, 2016.

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

K. Perera and Z.T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations
221 (2006), no. 1, 246-255.

P. Pucci, M. Xiang and B. Zhang, Multiple solutions for nonhomogeneous Schridinger-Kirchhoff type equations involving
the fractional p-Laplacian in RN, Calc. Var. Partial Differential Equations 54 (2015), 2785-2806.

J. Seok, Spike-layer solutions to nonlinear fractional Schrédinger equations with almost optimal nonlinearities, Electron.
J. Differential Equations 2015, No. 196, 19 pp.

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math.,
60 (2007), no. 1, 67-112.

M. Willem, Minimazx theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkh&user Boston,
Inc., Boston, MA, 1996. x+162 pp.

J. Zhang, D. G. Costa and M. J. do O, Ezistence and concentration of positive solutions for nonlinear Kirchhoff-type
problems with a general critical nonlinearity, Proc. Edinb. Math. Soc. (2) 61 (2018), no. 4, 1023-1040.

J. Zhang, M. do O and M. Squassina, Fractional Schrédinger-Poisson systems with a general subcritical or critical non-
linearity, Adv. Nonlinear Stud. 16 (2016), no. 1, 15-30.

J. Zhang and W. Zou, A Berestycki-Lions theorem revisited, Commun. Contemp. Math. 14 (2012), no. 5, 1250033, 14 pp.

VINCENZO AMBROSIO

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E SCIENZE MATEMATICHE
UNIVERSITA POLITECNICA DELLE MARCHE

Via BrEccCE BIANCHE, 12

60131 AncoNa (ITaLy)

E-mail address: v.ambrosio@univpm.it



	1. Introduction
	1.1. Main results
	1.2. State of the art and methodology

	2. preliminaries
	3. Subcritical limiting problems
	4. critical limiting problems
	5. Proof of Theorem 1.1
	6. Proof of Theorem 1.2
	References

