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CONCENTRATION PHENOMENA FOR A CLASS OF FRACTIONAL KIRCHHOFF
EQUATIONS IN RN WITH GENERAL NONLINEARITIES

VINCENZO AMBROSIO

Abstract. In this paper we study the following class of fractional Kirchhoff problems:{
ε2s M(ε2s−N [u]2s)(−∆)su + V (x)u = f(u) in RN ,

u ∈ Hs(RN ), u > 0 in RN ,

where ε > 0 is a small parameter, s ∈ (0, 1), N ≥ 2, (−∆)s is the fractional Laplacian, V : RN → R is
a positive continuous function, M : [0,∞) → R is a Kirchhoff function satisfying suitable conditions and
f : R→ R fulfills Berestycki-Lions type assumptions of subcritical or critical type. Using suitable variational
arguments, we prove the existence of a family of positive solutions (uε) which concentrates at a local minimum
of V as ε→ 0.

1. Introduction

1.1. Main results. In this paper we deal with the following class of fractional Kirchhoff problems:{
ε2sM(ε2s−N [u]2s)(−∆)su+ V (x)u = f(u) in RN ,
u ∈ Hs(RN ), u > 0 in RN , (1.1)

where ε > 0 is a small parameter, s ∈ (0, 1), N ≥ 2, M is a Kirchhoff function, V is a positive potential and
f is a continuous nonlinearity. The nonlocal operator (−∆)s appearing in (1.1) is the so called fractional
Laplacian operator defined for smooth functions u : RN → R by

(−∆)su(x) = C(N, s)P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy,

where C(N, s) is a positive normalizing constant, and Hs(RN ) denotes the fractional Sobolev space of func-
tions u ∈ L2(RN ) such that

[u]2s :=

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy <∞

endowed with the norm
‖u‖Hs(RN ) :=

√
[u]2s + |u|22.

We recall that Fiscella and Valdinoci [31] proposed for the first time a stationary fractional Kirchhoff model
in a bounded domain Ω ⊂ RN with homogeneous Dirichlet boundary conditions and involving a critical
nonlinearity: {

M
(
[u]2s
)

(−∆)su = λf(x, u) + |u|2∗
s−2u in Ω,

u = 0 in RN \ Ω,
(1.2)

where M is a continuous Kirchhoff function whose prototype is given by M(t) = a+ bt with a > 0 and b ≥ 0,
λ > 0 is a parameter and f is a continuous function with subcritical growth.
Their model generalizes in the fractional context the well-known Kirchhoff model introduced by Kirchhoff [44]
as an extension of the classical d’Alembert wave equation. For some interesting existence and multiplicity
results for Kirchhoff problems in the classic setting, we refer to [2,27,28,35,45,50] and the references therein.
In the fractional framework, after the pioneering work [31], many authors focused on fractional Kirchhoff
problems set in bounded domains or in the whole space and involving nonlinearities with subcritical or critical
growth; see for instance [10,30,42,43,46] and the references therein for unperturbed problems (that is when
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2 V. AMBROSIO

ε = 1 in (1.1)), and [9, 11] for some existence and multiplicity results for perturbed problems (that is when
ε > 0 is sufficiently small).

On the other hand, when M(t) ≡ 1, equation (1.1) boils down to a nonlinear fractional Schrödinger
equation of the type

ε2s(−∆)su+ V (x)u = h(x, u) in RN , (1.3)

proposed by Laskin [40] as a result of expanding the Feynman path integral, from the Brownian like to
the Lévy like quantum mechanical paths. Equation (1.3) has been object of investigation in these last two
decades and several existence and multiplicity results have been obtained under different conditions on V and
h; see [5,7,21,25,26] and the references therein. In a particular way, a great attention has been devoted to the
existence and concentration phenomenon as ε→ 0 of positive solutions to (1.3); see [3,6,22,29,34,36,39,47].
Motivated by the above works, the goal of this paper is to study the existence and concentration of positive
solutions to (1.1) under very general assumptions on the Kirchhoff function M and the nonlinearity f . We
always suppose that V : RN → R is a continuous function which satisfies the following conditions due to del
Pino and Felmer [23]:
(V 1) V1 := infx∈RN V (x) > 0,
(V 2) there exists an open bounded set Λ ⊂ RN such that

V0 := inf
x∈Λ

V (x) < min
x∈∂Λ

V (x).

We also setM := {x ∈ Λ : V (x) = V0}. Without loss of generality, we may assume that 0 ∈M.
Concerning the Kirchhoff function M , we suppose that M : [0,∞)→ R+ is continuous and such that:
(M1) there exists m0 > 0 such that M(t) ≥ m0 for all t ≥ 0,
(M2) lim inft→∞

[
M̂(t)− (1− 2s

N )M(t)t
]

=∞, where M̂(t) :=
∫ t

0
M(τ) dτ ,

(M3) M(t)/t
2s

N−2s → 0 as t→∞,
(M4) M is nondecreasing in [0,∞),
(M5) t 7→M(t)/t

2s
N−2s is nonincreasing in (0,∞).

We note that, if s = 1, the above assumptions have been used in [28]. Clearly, M(t) = m0 + bt, with b ≥ 0,
satisfies (M1)-(M5) when b = 0, N ≥ 2 and s ∈ (0, 1), and N = 3, s ∈ ( 3

4 , 1) whenever b > 0.
In the first part of the paper, we require that f : R→ R is a continuous function such that f(t) = 0 for t ≤ 0
and fulfills the following Beresticky-Lions type assumptions [12]:
(f1) limt→0

f(t)
t = 0,

(f2) lim supt→∞
f(t)
tp <∞ for some p ∈ (1, 2∗s − 1), where 2∗s := 2N

N−2s is the fractional critical exponent,
(f3) there exists T > 0 such that F (T ) > V0

2 T
2, where F (t) :=

∫ t
0
F (τ) dτ .

The first main result of this work can be stated as follows:

Theorem 1.1. Assume that (V 1)-(V 2), (M1)-(M5) and (f1)-(f3) are satisfied. When s ∈ (0, 1
2 ], we also

assume that f ∈ C0,α
loc (R) for some α ∈ (1− 2s, 1). Then, for small ε > 0, there exists a positive solution uε

to (1.1). Moreover, there exists a maximum point xε ∈ RN of uε such that limε→0 dist(xε,M) = 0, and for
any such xε, vε(x) = uε(ε x + xε) converges, up to a subsequence, in Hs(RN ) to a least energy solution of
the limiting problem

M([u]2s)(−∆)su+ V0u = f(u) in RN .

In particular, there exists a constant C > 0, independent of ε > 0, such that

uε(x) ≤ C εN+2s

εN+2s +|x− xε|N+2s
∀x ∈ RN .

Remark 1.1. The restrictions on the regularity on f are only used to obtain the better regularity of solutions
to (1.1) which guarantees the Pohozaev identity (see Proposition 1.1 in [16]).

In the second part of this paper, we consider (1.1) by requiring that f satisfies the following Beresticky-
Lions type assumptions of critical growth [52], that is f fulfills (f1) and
(f ′2) limt→∞

f(t)

t2
∗
s−1 = 1,
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(f ′3) there exist λ > 0 and p < 2∗s such that

f(t) ≥ t2
∗
s−1 + λtp−1 ∀t ≥ 0,

where λ > 0 is such that
• p ∈ (2, 2∗s) and λ > 0 if N ≥ 4s,
• p ∈ ( 4s

N−2s , 2
∗
s) and λ > 0 if 2s < N < 4s,

• p ∈ (2, 4s
N−2s ] and λ > 0 is sufficiently large if 2s < N < 4s.

Then, the second main result of this paper is the following:

Theorem 1.2. Assume that (V1)-(V2), (M1)-(M5) and (f1), (f ′2)-(f ′3) are satisfied. When s ∈ (0, 1
2 ], we also

assume that f ∈ C0,α
loc (R) for some α ∈ (1− 2s, 1). Then, for small ε > 0, there exists a positive solution uε

to (1.1). Moreover, there exists a maximum point xε ∈ RN of uε such that limε→0 dist(xε,M) = 0, and for
any such xε, vε(x) = uε(ε x+ xε) converges, up to a subsequence, in Hs(RN ) to a least energy solution of

M([u]2s)(−∆)su+ V0u = f(u) in RN .

1.2. State of the art and methodology. We point out that Theorem 1.1 and Theorem 1.2 can be seen
as the nonlocal fractional counterpart of Theorem 1.1 in [28] and Theorem 1.1 in [50], respectively. We recall
that in [28] Figueiredo et al. refined some arguments developed in [13, 15, 17], in which the authors studied
the existence and concentration of positive solutions for the nonlinear Schrödinger equation

− ε2 ∆u+ V (x)u = f(u) in RN , (1.4)

and involving general subcritical nonlinearities. More precisely, Byeon and Jeanjean [13] explored what are
the essential features on f which guarantee the existence of localized ground states. To do this, the authors
developed a new variational approach which consists in searching solutions of (1.4) in a neighborhood of the
set of the least energy solution of the limiting problem associated with (1.4) whose mass stays close to M;
see [14, 15, 17] for more details. Subsequently, motivated by [28, 52], Zhang et al. [50] extended the result
in [28] when f is a general critical nonlinearity by applying a suitable truncation argument.

The purpose of this work is to generalize the results in [28,50] to the fractional setting s ∈ (0, 1).
For the sake of completeness, we start to mention some recent results in the caseM(t) ≡ 1, that is when (1.1)
reduces to the fractional Schrödinger equation (1.3). Seok [47] proved the existence of multi-peak solutions
to (1.3) by assuming (f1)-(f3) and extending in the nonlocal framework the result in [14]. In [47], the author
did not introduce a penalization term as in [13, 14] but proved a kind of intersection lemma by using degree
theory after transforming (1.3) into a degenerate elliptic problem via the extension method [20]. In [39]
Jin et al. considered (1.3) under conditions (f1), (f ′2)-(f ′3) and constructed a family of positive solutions to
(1.3) which concentrates at a local minimum of V as ε → 0. The authors combined the extension method,
a truncation argument inspired by [50] with the result in [47]. Simultaneously, He [34] obtained the same
result by applying the extension method and combining the penalization methods developed in [17] and [23],
respectively. We stress that this last approach has been previously used by Gloss [32] to extend the result
in [13] to a p-Laplacian problem involving a general subcritical nonlinearity.
We note that the results in [34, 39, 47] improve the previous ones obtained in [3, 6, 36] in which the authors,
motivated by [23], considered nonlinearities satisfying the Ambrosetti-Rabinowitz condition [4] and by re-
quiring that f(t)

t is strictly increasing for t > 0. Indeed, under assumptions (f1)-(f3) or (f1), (f ′2)-(f ′3), the
Nehari method developed in the above mentioned papers does not work and it is very hard to verify the
Palais-Smale compactness condition in this situation; see [8] for more details.
Concerning fractional Kirchhoff problems, to our knowledge, only few papers deal with the existence and
concentration behavior of positive solutions as ε→ 0. In fact, motivated by [3,6,36], in [9,11,37] the authors
studied the existence and concentration phenomena to (1.1) when M(t) = a + bt, N = 3 and s ∈ ( 3

4 , 1).
However, the nonlinearities in [9, 11,37] are less general than the ones presented here.
In this paper, by using suitable variational methods, we improve the results in [9, 11, 37] by considering a
more general class of fractional Kirchhoff problems in the whole space RN , with N ≥ 2. More precisely,
after realizing (1.1) as a local linear degenerate elliptic equation in RN+1

+ together with a nonlinear Neumann
boundary condition on ∂RN+1

+ , we take inspiration by the penalization approach in [13, 23, 32] and some
arguments used in [3, 9, 11, 28, 34, 39, 50], to obtain the existence of a family of positive solutions which con-
centrates around a local minimum of the potential V (x), as ε→ 0. We emphasized that, making use of the
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extension method, several techniques used in the case s = 1 cannot be directly adapted in our setting because
we have to take care of the traces terms of the involved functions and to work with weighted Lebesgue spaces.
Moreover, due to the presence of the Kirchhoff term, our analysis is much more delicate and intriguing with
respect to the case M(t) ≡ 1 and s ∈ (0, 1) discussed above. For instance, if (uε) is a bounded sequence in
Hs(RN ) of solutions to (1.1) such that uε(ε x+xε) ⇀ u in Hs(RN ) and xε → x0 as ε→ 0, then u is solution
to the limiting problem α0(−∆)su + V (x0)u = f(u) in RN , where α0 := limε→0M([uε]

2
s), and in general it

is complicated to verify that α0 = M([u]2s). Therefore, some refined estimates will be needed to overcome
these difficulties; see Lemma 5.1 and Lemma 5.3.
As far as we know, these are the first existence results for (1.1) under local assumptions on the potential V
and general nonlinearities f with subcritical or critical growth.
The paper is organized as follows. In section 2 we introduce the notations and we recall some useful results.
In section 3 we study the limiting Kirchhoff problem associated with (1.1) by assuming (f1)-(f3). The critical
limiting Kirchhoff problem is considered in section 4. In section 5 we provide the proof of Theorem 1.1. The
last section is devoted to the proof of Theorem 1.2.

2. preliminaries

In this section we fix the notations and collect some preliminary results for future references. For more
details we refer to [19,20,24,25,43].

We denote the upper half-space in RN+1 by

RN+1
+ := {(x, y) ∈ RN+1 : y > 0}.

For p ∈ [1,∞], let Lp(RN ) be the set of measurable functions u : RN → R such that

|u|p :=

{ (∫
RN |u|

p dx
)1/p

<∞ if p <∞,
esssupx∈RN |u(x)| if p =∞.

Let Ds,2(RN ), with s ∈ (0, 1), be the completion of C∞c (RN ) with respect to the Gagliardo seminorm

[u]s :=

(∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

.

Then (see [24]) the embedding Ds,2(RN ) ⊂ L2∗
s (RN ) is continuous and

|u|2∗
s
≤ c(N, s)[u]s ∀u ∈ Ds,2(RN ).

Denote by Hs(RN ) the fractional Sobolev space

Hs(RN ) := {u ∈ L2(RN ) : [u]s <∞}
endowed with the norm

‖u‖Hs(RN ) :=
(
[u]2s + |u|22

) 1
2 .

Then, Hs(RN ) is continuously embedded in Lp(RN ) for all p ∈ [2, 2∗s) and compactly in Lploc(RN ) for all
p ∈ [1, 2∗s); see [24]. We also define the fractional radial Sobolev space

Hs
rad(RN ) := {u ∈ Hs(RN ) : u(x) = u(|x|)}.

It is well-known (see [41]) that Hs
rad(RN ) is compactly embedded in Lq(RN ) for all q ∈ (2, 2∗s).

Let us define Xs(RN+1
+ ) as the completion of C∞c (RN+1

+ ) under the norm

‖u‖Xs(RN+1
+ ) :=

(∫∫
RN+1

+

y1−2s|∇u|2 dxdy

) 1
2

.

Then (see [18]) there exists a linear trace operator Tr : Xs(RN+1
+ )→ Ds,2(RN ) such that

√
κs[Tr(u)]s ≤ ‖u‖Xs(RN+1

+ ) for any u ∈ Xs(RN+1
+ ),

where κs := 21−2sΓ(1− s)/Γ(s). In what follows, we set u(·, 0) := Tr(u).
Denote by

B+
R(x0, y0) := {(x, y) ∈ RN+1

+ : |(x, y)− (x0, y0)| < R}
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the open ball in RN+1
+ with center (x0, y0) ∈ RN+1

+ and radius R > 0, and

Γ0
R(z0) := {(x, 0) ∈ ∂RN+1

+ : |x− z0| < R}

the ball in RN with center z0 ∈ RN and radius R > 0.
We denote by Xs

0(B+
R(0, 0)), with R > 0, the completion of C∞c (B+

R(0, 0) ∪ Γ0
R(0)) under the norm

‖u‖Xs0 (B+
R(0,0)) :=

(∫∫
B+
R(0,0)

y1−2s|∇u|2 dxdy

) 1
2

.

Note that if w ∈ Xs
0(B+

R(0, 0)) then its extension by zero outside B+
R(0, 0) can be approximated by functions

with compact support in RN+1
+ . Moreover, for all r ∈ [1, 2∗s] and u ∈ Xs

0(B+
R(0, 0)) it holds (see [18])

C(r, s,N,R)

(∫
Γ0
R(0)

|u(·, 0)|r dx

) 2
r

≤
∫∫

B+
R(0,0)

y1−2s|∇u|2 dxdy.

We define

X1,s(RN+1
+ ) :=

{
u ∈ Xs(RN+1

+ ) :

∫
RN

u2(x, 0) dx <∞
}

equipped with the norm

‖u‖X1,s(RN+1
+ ) :=

(∫∫
RN+1

+

y1−2s|∇u|2 dxdy +

∫
RN

u2(x, 0) dx

) 1
2

.

Finally, we consider
X1,s

rad(RN+1
+ ) := {u ∈ X1,s(RN+1

+ ) : u(x, y) = u(|x|, y)}.
The following Sobolev inequality holds true:

Lemma 2.1. [18] For every u ∈ X1,s(RN+1
+ ) it holds for some positive constant S(s,N) > 0

S(s,N)

(∫
RN
|u(x, 0)|2

∗
s dx

) 2
2∗s
≤
∫∫

RN+1
+

y1−2s|∇u|2 dxdy.

For all r ∈ (1,∞), we define the weighted Lebesgue space Lr(RN+1
+ , y1−2s) endowed with the norm∫∫

RN+1
+

y1−2s|u|r dxdy.

We recall the following useful result proved in [25]:

Lemma 2.2. [25]
(i) There exists a constant C > 0 such that for all w ∈ Xs(RN+1

+ ) it holds(∫∫
RN+1

+

y1−2s|w|2γ dxdy

) 1
2γ

≤ C

(∫∫
RN+1

+

y1−2s|∇w|2 dxdy

) 1
2

,

where γ := 1 + 2
N−2s .

(ii) Let R > 0 and T be a subset of Xs(RN+1
+ ) such that

sup
w∈T

∫
RN+1

+

y1−2s|∇w|2 dxdy <∞.

Then, T is compact in L2(B+
R(0, 0), y1−2s).

The fractional Laplacian (−∆)s may be defined for u : RN → R belonging to the Schwartz space of rapidly
decaying functions by

(−∆)su(x) = C(N, s)P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy
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where

C(N, s) :=

(∫
RN

1− cos(x1)

|x|N+2s
dx

) 1
2

.

It can be also defined using Fourier transform by

F((−∆)su(k)) = |k|2sFu(k).

It is well-known (see [24]) that for all u ∈ Hs(RN )

|(−∆)
s
2u|22 =

∫
RN
|k|2s|Fu(k)|2 dk =

1

2
C(N, s)[u]2s.

In [20], it is showed that one can see (−∆)s by considering it as the Dirichlet to Neumann operator associated
to the s-harmonic extension in the half-space, paying the price to add a new variable. More precisely, for any
u ∈ Ds,2(RN ) there exists a unique function U ∈ Xs(RN+1

+ ) solving the following problem{
− div(y1−2s∇U) = 0 in RN+1

+ ,

U(·, 0) = u on ∂RN+1
+ = RN .

The function U is called the s-harmonic extension of u and possesses the following properties:
(i)

∂U

∂ν1−2s
:= − lim

y→0
y1−2s ∂U

∂y
(x, y) = κs(−∆)su(x) in distribution sense,

(ii)
√
κs[u]s = ‖U‖Xs(RN+1

+ ) ≤ ‖V ‖Xs(RN+1
+ ) for all V ∈ Xs(RN+1

+ ) such that V (·, 0) = u.

(iii) U ∈ C∞(RN+1
+ ) ∩ L2(K, y1−2s) for any compact set K ⊂ RN+1

+ ,

U(x, y) =

∫
RN

Ps(x− z, y)u(z) dz

where

Ps(x, y) := pN,s
y2s

(|x|2 + y2)
N+2s

2

and pN,s is a positive constant such that
∫
RN Ps(x, y) dx = 1 for all y > 0.

Using the change of variable x 7→ ε x, it is possible to prove that (1.1) is equivalent to the following problem{
M([u]2s)(−∆)su+ Vε(x)u = f(u) in RN ,
u ∈ Hs(RN ), u > 0 in RN , (2.1)

where Vε(x) := V (ε x). Then, in view of the previous facts, problem (2.1) can be realized in a local manner
through the nonlinear boundary value problem: − div(y1−2s∇w) = 0 in RN+1

+ ,
1

M(‖w‖2
Xs(RN+1

+
)
)

∂w
∂ν1−2s = κs[−Vεw(·, 0) + f(w(·, 0))] in RN . (2.2)

For simplicity we will drop the constant κs from the second equation in (2.2).

3. Subcritical limiting problems

We begin by modifying f as in [12]. Let f̂ : R→ R be defined as follows:
(i) if f(t) > 0 for all t ≥ T̂ , put f̂(t) := f(t),

(ii) if there exists τ0 ≥ T̂ such that f(τ0) = 0, we put

f̂(t) :=

{
f(t) for t < τ0,
0 for t ≥ τ0,

where T̂ := sup{t ∈ [0, T ] : f(t) > V0t}.
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Note that f̂ satisfies the same assumptions as f and

0 ≤ lim inf
t→∞

f̂(t)

tp
≤ lim sup

t→∞

f̂(t)

tp
<∞.

Moreover, if (ii) occurs and u is a solution to (1.1) with f̂(t), then we can use (u− τ0)+ as test function to
deduce that u ≤ τ0 in RN , that is u is a solution to (1.1) with f(t). From now on, we replace f by f̂ and
keep the same notation f(t).
In this section we focus on the following limiting problem associated with (2.2): −div(y1−2s∇w) = 0 in RN+1

+ ,
1

M(‖w‖2
Xs(RN+1

+
)
)

∂w
∂ν1−2s = −V0w(·, 0) + f(w(·, 0)) in RN . (3.1)

To obtain our results we take inspiration by some arguments used in [28, 35]. Firstly, we show that the
solutions of (3.1) satisfy a Pohozaev identity.

Lemma 3.1. Assume that (M1) holds and u ∈ X1,s(RN+1
+ ) is a solution to (3.1). Then u satisfies the

following Pohozaev type identity:

P (u) :=
N − 2s

2
M(‖u‖2

Xs(RN+1
+ )

)‖u‖2
Xs(RN+1

+ )
−N

∫
RN

F (u(x, 0))− V0

2
u2(x, 0) dx = 0.

Proof. Put α0 := M(‖u‖2
Xs(RN+1

+ )
). Then u is a solution to{
− div(y1−2s∇u) = 0 in RN+1

+ ,
1
α0

∂u
∂ν1−2s = −V0u(·, 0) + f(u(·, 0)) in RN .

Arguing as in [5, 7, 16,21], we deduce that u satisfies the following Pohozaev identity
N − 2s

2
α0‖u‖2Xs(RN+1

+ )
−N

∫
RN

F (u(x, 0))− V0

2
u2(x, 0) dx = 0

which implies the thesis. �

In order to find weak solutions to (3.1), we look for critical points of the energy functional LV0
:

X1,s(RN+1
+ )→ R defined as

LV0(u) :=
1

2
M̂
(
‖u‖2

Xs(RN+1
+ )

)
+

1

2

∫
RN

V0u
2(x, 0) dx−

∫
RN

F (u(x, 0)) dx.

From (f1)-(f2), it is easy to check that LV0
∈ C1(X1,s(RN+1

+ ),R). Moreover, we see that LV0
possesses a

nice geometric structure.

Lemma 3.2. Assume (M1)-(M3). Then, LV0 has a mountain pass geometry.

Proof. By (M1), (f1), (f2) and Hs(RN ) ⊂ Lp+1(RN ) we have

LV0
(u) ≥ m0

2
‖u‖2

Xs(RN+1
+ )

+
V0

2
|u(·, 0)|22 − ε |u(·, 0)|22 − Cε|u(·, 0)|p+1

p+1

≥ c1‖u‖2X1,s(RN+1
+ )

− c2‖u‖p+1

X1,s(RN+1
+ )

.

Hence, there exist ρ, δ > 0 such that LV0
(u) ≥ δ for ‖u‖X1,s(RN+1

+ ) = ρ.
Now, for all R > 0 we define

wR(x, y) :=


T if (x, y) ∈ B+

R(0, 0),

T
(
R+ 1−

√
|x|2 + y2

)
if (x, y) ∈ B+

R+1(0, 0) \B+
R(0, 0),

0 if (x, y) ∈ RN+1
+ \B+

R+1(0, 0).

It is clear that wR ∈ X1,s
rad(RN+1

+ ). Note that, by (f3), for R > 0 large enough it holds∫
RN

F (wR(x, 0))− V0

2
w2
R(x, 0) dx ≥ 1.
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Now, fix such an R > 0 and consider wR,θ(x, y) := wR(x/eθ, y/eθ). Then,

LV0
(wR,θ) =

1

2
M̂(e(N−2s)θ‖wR‖2Xs(RN+1

+ )
)− eNθ

∫
RN

F (wR(x, 0))− V0

2
w2
R(x, 0) dx

≤ 1

2
M̂(e(N−2s)θ‖wR‖2Xs(RN+1

+ )
)− eNθ → −∞ as θ →∞

because (M3) yields
e−NθM̂(e(N−2s)θ‖wR‖2Xs(RN+1

+ )
)→ 0 as θ →∞.

�

In view of Lemma 3.2 we can define the minimax level

cV0 := inf
γ∈ΓV0

max
t∈[0,1]

LV0(γ(t)) (3.2)

and
ΓV0

:= {γ ∈ C([0, 1], X1,s(RN+1
+ )) : γ(0) = 0, LV0

(γ(1)) < 0}. (3.3)
Obviously, cV0

> 0. We can also note that
cV0

= cV0,rad, (3.4)
where

cV0,rad := inf
γ∈ΓV0,rad

max
t∈[0,1]

LV0
(γ(t)),

and
ΓV0,rad := {γ ∈ C([0, 1], X1,s

rad(RN+1
+ )) : γ(0) = 0, LV0

(γ(1)) < 0}.
Indeed, cV0

≤ cV0,rad by the definitions. For the opposite inequality, take γ ∈ ΓV0
and consider γε(t) :=

ρε ∗ γ(t), where ρε ∈ C∞c (RN+1
+ ) is a standard mollifier. Then, γε ∈ C([0, 1], X1,s(RN+1

+ )), γε(0) = 0 and
γε(t) ∈ C∞(RN+1

+ ) ∩X1,s(RN+1
+ ) for all t ∈ [0, 1]. Since

sup
t∈[0,1]

‖γε(t)− γ(t)‖X1,s(RN+1
+ ) → 0 as ε→ 0,

we deduce that
max
t∈[0,1]

LV0
(γε(t))→ max

t∈[0,1]
LV0

(γ(t)) as ε→ 0.

Now, let φ∗ε(t) be the symmetric decreasing rearrangement of γε(t)(·, 0) ∈ Hs(RN ), and denote by γ∗ε (t) the
solution of {

−div(y1−2s∇γ∗ε (t)) = 0 in RN+1
+ ,

γε(t)(·, 0) = φ∗ε(t) in RN .

Since γ∗ε (t) is the s-harmonic extension of φ∗ε(t), and using the trace inequality and Theorem 9.2 in [1] we
have

‖γ∗ε (t)‖Xs(RN+1
+ ) = [φ∗ε(t)]s ≤ [γε(t)(·, 0)]s ≤ ‖γε(t)‖Xs(RN+1

+ ).

On the other hand, for all G : R→ R continuous∫
RN

G(γ∗ε (t)(·, 0)) dx =

∫
RN

G(φ∗ε(t)) dx =

∫
RN

G(γε(t)(·, 0)) dx.

Observing that M̂ is strictly increasing (by (M1)), we obtain that LV0
(γ∗ε (t)) ≤ LV0

(γε(t)) for all t ∈ [0, 1].
Moreover, since γε(·, 0) ∈ C∞(RN ), we have that γε(·, 0) is co-area regular (see [1]) and using Theorem 9.2
in [1] we deduce that φ∗ε ∈ C([0, 1], Hs

rad(RN )) and consequently γ∗ε ∈ C([0, 1], X1,s
rad(RN+1

+ )). In conclusion,
γ∗ε ∈ ΓV0,rad and (3.4) holds true.

Now we prove the existence of a Palais-Smale sequence of LV0
with an extra property related to the

Pohozaev identity; see [28,35,38].

Proposition 3.1. There exists a sequence (wn) ⊂ X1,s
rad(RN+1

+ ) such that

LV0
(wn)→ cV0

, L′V0
(wn)→ 0, P (wn)→ 0. (3.5)
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Proof. Let L̃V0
(θ, u) := (LV0

◦ Φ)(θ, u) for (θ, u) ∈ R × X1,s
rad(RN+1

+ ), where Φ(θ, u) := u( x
eθ
, y
eθ

). Here
R×X1,s

rad(RN+1
+ ) is equipped with the standard norm

‖(θ, u)‖R×X1,s(RN+1
+ ) := (|θ|2 + ‖u‖2

X1,s(RN+1
+ )

)
1
2 .

It follows from Lemma 3.2 that L̃V0
has a mountain pass geometry, so we can define the mountain pass level

of L̃V0

c̃V0
:= inf

γ̃∈Γ̃V0

max
t∈[0,1]

L̃V0
(γ̃(t))

where
Γ̃V0 := {γ̃ ∈ C([0, 1],R×X1,s

rad(RN+1
+ )) : γ̃(0) = (0, 0), L̃V0(γ̃(1)) < 0}.

It is easy to show that c̃V0 = cV0 (see [7, 38]). Then, by the general minimax principle (see Theorem 2.8
in [49]), we deduce that there exists a sequence ((θn, un)) ⊂ R×X1,s

rad(RN+1
+ ) such that, as n→∞,

(i) (LV0 ◦ Φ)(θn, un)→ cV0 ,
(ii) (LV0

◦ Φ)′(θn, un)→ 0 in (R×X1,s
rad(RN+1

+ ))′,
(iii) θn → 0.
Indeed, if we take ε = εn = 1

n2 , δ = δn = 1
n in Theorem 2.8 in [49], (i) and (ii) follow by (a) and

(c) in Theorem 2.8 in [49]. In view of (3.2), (3.3), for ε = εn := 1
n2 , we can find γn ∈ ΓV0

such that
supt∈[0,1] LV0

(γn(t)) ≤ cV0
+ 1

n2 . Set γ̃n(t) := (0, γn(t)). Then

sup
t∈[0,1]

(LV0
◦ Φ)(γ̃n(t)) = sup

t∈[0,1]

LV0
(γn(t)) ≤ cV0

+
1

n2
.

From (b) of Theorem 2.8 in [49], there exists (θn, un) ∈ R×X1,s(RN+1
+ ) such that

distR×X1,s(RN+1
+ )((θn, un), (0, γn(t))) ≤ 2

n
,

that is (iii) holds true. Here, we used the notation

distR×X1,s(RN+1
+ )((θ, u), A) := inf

(τ,v)∈R×X1,s(RN+1
+ )

(|θ − τ |2 + ‖u− v‖2
X1,s(RN+1

+ )
)

1
2 ,

for A ⊂ R×Hs(RN ). Now, for (h,w) ∈ R×X1,s(RN+1
+ ), it holds

〈(LV0
◦ Φ)′(θn, un), (h,w)〉 = 〈L′V0

(Φ(θn, un)),Φ′(θn, w)〉+ P (Φ(θn, un))h. (3.6)

Then, choosing h = 1 and w = 0 in (3.6), we deduce that

P (Φ(θn, un))→ 0.

On the other hand, for every v ∈ X1,s(RN+1
+ ), taking w(x, y) = v(eθnx, eθny) and h = 0 in (3.6), it follows

from (ii) and (iii) that

〈L′V0
(Φ(θn, un)), v〉 = o(1)‖v(eθnx, eθny)‖X1,s(RN+1

+ ) = o(1)‖v‖X1,s(RN+1
+ ).

Consequently, wn := Φ(θn, un) is the sequence that fulfills the desired properties. �

Lemma 3.3. Every sequence (wn) satisfying (3.5) is bounded in X1,s(RN+1
+ ).

Proof. Using (3.5) we see that

cV0
+ on(1) = LV0

(wn)− 1

N
P (wn)

=
1

2
M̂
(
‖wn‖2Xs(RN+1

+ )

)
−
(
N − 2s

2N

)
M
(
‖wn‖2Xs(RN+1

+ )

)
‖wn‖2Xs(RN+1

+ )
.
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From (M2) we deduce that (‖wn‖Xs(RN+1
+ )) is bounded in R. On the other hand, P (wn) = on(1) and (f1)-(f2)

yield
N − 2s

2
M
(
‖wn‖2Xs(RN+1

+ )

)
‖wn‖2Xs(RN+1

+ )
+N

V0

2
|wn(·, 0)|22 = N

∫
RN

F (wn(x, 0)) dx+ on(1)

≤ Nδ|wn(·, 0)|22 +NCδ|wn(·, 0)|2
∗
s

2∗
s

+ on(1).

Choosing δ > 0 sufficiently small and using (M1) and the boundedness of (|wn(·, 0)|2∗
s
), we can infer that

(|wn(·, 0)|2) is bounded in R. In conclusion, (wn) is bounded in X1,s(RN+1
+ ). �

Lemma 3.4. There exist a sequence (xn) ⊂ RN and constants R > 0, β > 0 such that∫
Γ0
R(xn)

w2
n(x, 0) dx ≥ β,

where (wn) is the sequence given in Proposition 3.1.

Proof. Assume by contradiction that the thesis is not true. Then, by the vanishing Lions-type lemma (see
Lemma 3.3 in [36]), we deduce that

wn(·, 0)→ 0 in Lq(RN ) ∀q ∈ (2, 2∗s). (3.7)

Consequently, by (f1)-(f2), we have ∫
RN

f(wn(x, 0))wn(x, 0) dx = on(1).

Recalling that 〈L′V0
(wn), wn〉 = on(1), we get

M(‖wn‖2Xs(RN+1
+ )

)‖wn‖2Xs(RN+1
+ )

+ V0|wn(·, 0)|22 = on(1)

and using (M1) we obtain that
‖wn‖X1,s(RN+1

+ ) → 0.

Therefore, LV0(wn)→ 0 and this leads to a contradiction because cV0 > 0. �

Now we define
TV0

:= {u ∈ X1,s(RN+1
+ ) \ {0} : L′V0

(u) = 0,max
RN

u(·, 0) = u(0, 0)},

bV0 := inf
u∈TV0

LV0(u),

and
SV0

:= {u ∈ TV0
: LV0

(u) = bV0
}.

Lemma 3.5. Assume (M1)-(M5). Then there exists u ∈ SV0 .

Proof. Let (wn) be the sequence given by Lemma 3.1. Set w̃n(x, y) := wn(x + xn, y) where (xn) is given in
Lemma 3.4. By Lemma 3.3, we know that (wn) is bounded in X1,s

rad(RN+1
+ ), that is ‖wn‖X1,s(RN+1

+ ) ≤ C for

all n ∈ N. Hence w̃n ⇀ w̃ in X1,s
rad(R

N+1
+ ) and w̃n(·, 0) → w̃(·, 0) in Lq(RN ) for any q ∈ (2, 2∗s), for some

w̃ ∈ X1,s
rad(RN+1

+ ) \ {0}. Then, w̃ is a weak solution to{
−div(y1−2s∇w̃) = 0 in RN+1

+ ,
1
α0

∂w̃
∂ν1−2s = −V0w̃(·, 0) + f(w̃(·, 0)) in RN , (3.8)

where
α0 := lim

n→∞
M(‖w̃n‖2Xs(RN+1

+ )
) = lim

n→∞
M(‖wn‖2Xs(RN+1

+ )
) ≤M(C2) <∞.

Note that the last inequality is due to (M4).
Clearly, by Fatou’s Lemma, we have

0 < m0 ≤M(‖w̃‖2
Xs(RN+1

+ )
) ≤ α0. (3.9)

In what follows, we prove that
α0 = M(‖w̃‖2

Xs(RN+1
+ )

),
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and thus w̃ is a weak solution to (1.1). Since w̃ solves (3.8) and using the regularity assumptions on f , we
deduce that w̃ satisfies the following Pohozaev identity [7, 16,21]:

N − 2s

2
α0‖w̃‖2Xs(RN+1

+ )
−N

∫
RN

(
F (w̃(x, 0))− V0

2
w̃2(x, 0)

)
dx = 0. (3.10)

Now, we apply Lemma 2.4 in [21] with X = Hs
rad(RN ), P (t) = f(t)t, p1 = 2 and p2 = 2∗s to see that

α0‖w̃‖2Xs(RN+1
+ )

+ V0|w̃(·, 0)|22 ≤ lim inf
n→∞

[M(‖w̃n‖2Xs(RN+1
+ )

)‖w̃n‖sXs(RN+1
+ )

+ V0|w̃n(·, 0)|22]

≤ lim sup
n→∞

[M(‖w̃n‖2Xs(RN+1
+ )

)‖w̃n‖sXs(RN+1
+ )

+ V0|w̃n(·, 0)|22]

= lim sup
n→∞

[M(‖wn‖2Xs(RN+1
+ )

)‖wn‖2Xs(RN+1
+ )

+ V0|wn(·, 0)|22]

= lim sup
n→∞

∫
RN

f(wn(x, 0))wn(x, 0) dx

= lim
n→∞

∫
RN

f(w̃n(x, 0))w̃n(x, 0) dx

=

∫
RN

f(w̃(x, 0))w̃(x, 0) dx

= α0‖w̃‖2Xs(RN+1
+ )

+ V0|w̃(·, 0)|22

which implies that ‖w̃n‖X1,s(RN+1
+ ) → ‖w̃‖X1,s(RN+1

+ ) and thus w̃n → w̃ in X1,s(RN+1
+ ). Hence, α0 =

M(‖w̃‖2
Xs(RN+1

+ )
). Therefore, by LV0(wn) = LV0(w̃n) → cV0 and L′V0

(wn) = L′V0
(w̃n) → 0, we have that

LV0(w̃) = cV0 and L′V0
(w̃) = 0. Since w̃ 6= 0, we deduce that cV0 ≥ bV0 .

Now, let w ∈ X1,s(RN+1
+ ) \ {0} be any solution to (3.1). Define

γ(t) :=

{
w(xt ,

y
t ) for t > 0,

0 for t = 0.

Using the fact that w satisfies the Pohozaev identity (see Lemma 3.1), we get

LV0(γ(t)) =
1

2
M̂
(
tN−2s‖w‖2

Xs(RN+1
+ )

)
− tN

(
N − 2s

2N

)
M
(
‖w‖2

Xs(RN+1
+ )

)
‖w‖2

Xs(RN+1
+ )

,

and differentiating with respect to t we obtain
d

dt
LV0(γ(t)) =

N − 2s

2
‖w‖2

Xs(RN+1
+ )

tN−2s−1
[
M(tN−2s‖w‖2

Xs(RN+1
+ )

)− t2sM(‖w‖2
Xs(RN+1

+ )
)
]
.

By (M5) and using a change of variable, we observe that t 7→M(tN−2s‖w‖2
Xs(RN+1

+ )
)/t2s is nonincreasing in

(0,∞), so we have
d

dt
LV0(γ(t)) > 0 ∀t ∈ (0, 1),

d

dt
LV0(γ(t)) < 0 ∀t ∈ (1,∞),

which implies that
max
t≥0

LV0
(γ(t)) = LV0

(γ(1)) = LV0
(w).

Moreover, noting that (M1) and (M3) yield

lim
t→∞

M̂(tN−2s)

tN
=
[∞
∞

]
= lim
t→∞

M(tN−2s)

(tN−2s)
2s

N−2s

N − 2s

N
= 0,

we deduce

LV0(γ(t)) =
tN

2

[
1

tN
M̂
(
tN−2s‖w‖2

Xs(RN+1
+ )

)
−
(
N − 2s

2N

)
M
(
‖w‖2

Xs(RN+1
+ )

)
‖w‖2

Xs(RN+1
+ )

]
→ −∞,

as t → ∞. Then there exists τ > 0 sufficiently large such that LV0
(γ(τ)) < 0. After a suitable scale change

in t, we obtain that γ ∈ ΓV0
. By the definition of cV0

, we see that LV0
(w) ≥ cV0

. Since w is arbitrary, we
have that bV0 ≥ cV0 and this implies that bV0 = cV0 .
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Choosing u− = min{u, 0} as test function in the weak formulation of (3.1) we can deduce that u ≥ 0 in
RN . By (f1)-(f2) and using a Moser iteration argument (see [7, 21]), we obtain that u ∈ L∞(RN ). By the
growth assumptions on f and in view of the Hölder regularity results in [48], we deduce that u ∈ C0,β(RN )
(see [7, 16,21]). From the Harnack inequality [19,33] we conclude that u > 0 in RN . �

Remark 3.1. For m > 0, we use the notation

Lm(u) =
1

2
M̂(‖u‖2

Xs(RN+1
+ )

) +
m

2
|u(·, 0)|22 −

∫
RN

F (u(x, 0)) dx

and denote by cm the corresponding mountain pass level. It is standard to verify that if m1 > m2 then
cm1

> cm2
.

In what follows, we aim to show that SV0 is compact in X1,s(RN+1
+ ). To do this we begin by giving some

auxiliary results. Let us consider the following fractional elliptic problem:{
− div(y1−2s∇w) = 0 in RN+1

+ ,
∂w

∂ν1−2s = −V0w(·, 0) + f(w(·, 0)) in RN . (3.11)

If w is a solution to (3.11), then it satisfies the Pohozaev identity (see [5, 7, 16,21,51])

N − 2s

2
‖w‖2

Xs(RN+1
+ )

−N
∫
RN

F (u(x, 0))− V0

2
u2(x, 0) dx = 0. (3.12)

Let

EV0
(u) =

1

2
‖u‖2

Xs(RN+1
+ )

+
V0

2
|u(·, 0)|22 −

∫
RN

F (u(x, 0)) dx,

b̃V0
:= inf

u∈T̃V0
EV0

(u),

T̃V0
= {u ∈ X1,s(RN+1

+ ) \ {0} : E ′V0
(u) = 0,max

RN
u(·, 0) = u(0, 0)},

and
S̃V0

= {u ∈ T̃V0
: EV0

(u) = b̃V0
}.

Next we show that it is possible to define a map which relates the ground state solutions of (3.11) to the
ones for (3.1). We first prove the following result for the Kirchhoff functions.

Lemma 3.6. Assume that M ∈ C([0,∞)) and M(t) ≥ 0. Then, (M5) is equivalent to
(M6) t 7→ M̂(t)−

(
1− 2s

N

)
M(t)t is nondecreasing in [0,∞).

Proof. We argue as in Lemma 2.17 in [28]. Let (M5) be in force. Then, for 0 ≤ t1 < t2 we have

M̂(t2)−
(

1− 2s

N

)
M(t2)t2 = M̂(t1) +

∫ t2

t1

M(t)

t
2s

N−2s

t
2s

N−2s dt−
(

1− 2s

N

)
M(t2)t2

≥ M̂(t1) +
M(t2)

t
2s

N−2s

2

∫ t2

t1

t
2s

N−2s dt−
(

1− 2s

N

)
M(t2)t2

= M̂(t1)−
(

1− 2s

N

)
M(t2)

t
2s

N−2s

2

t
N

N−2s

1

≥ M̂(t1)−
(

1− 2s

N

)
M(t1)t1.

(3.13)

The other implication is obtained as in the case s = 1 with small modifications, so we omit the details. �

Lemma 3.7. Assume (M1)-(M5). Then, SV0
6= ∅ and there exists an injective map T : S̃V0

→ SV0
.

Proof. By [7,16,21] we know that S̃V0
6= ∅. Let φ ∈ S̃V0

and define

tφ := inf
{
t > 0 : t2s = M(tN−2s‖φ‖2

Xs(RN+1
+ )

)
}
.
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In what follows we verify that tφ ∈ (0,∞). Since TV0
6= ∅ by Lemma 3.5, we can find w ∈ TV0

and put
α2s := M(‖w‖2

Xs(RN+1
+ )

). Set wα(x, y) = w(αx, αy) and note that wα is a weak solution to{
−div(y1−2s∇wα) = 0 in RN+1

+ ,
∂wα
∂ν1−2s = −V0wα(·, 0) + f(wα(·, 0)) in RN . (3.14)

By (4.3) we get
s

N
‖φ‖2

Xs(RN+1
+ )

= EV0
(φ) ≤ EV0

(wα) =
s

N
‖wα‖2Xs(RN+1

+ )
=

s

N
α2s−N‖w‖2

Xs(RN+1
+ )

that is αN−2s‖φ‖2
Xs(RN+1

+ )
≤ ‖w‖2

Xs(RN+1
+ )

. Using (M4) we have

M(αN−2s‖φ‖2
Xs(RN+1

+ )
) ≤M(‖w‖2

Xs(RN+1
+ )

) = α2s.

From (M1) and the continuity ofM , there is t0 ∈ (0, α] such that t2s0 = M(tN−2s
0 ‖φ‖2

Xs(RN+1
+ )

). Consequently,

0 < m0 ≤ t2sφ ≤ α2s and tφ is well-defined.
At this point, for u ∈ TV0

, we define

(Tu)(x, y) := u(x/tu, y/tu).

Since
t2su = M(tN−2s

u ‖u‖2
Xs(RN+1

+ )
),

we see that Tu is a solution to (3.1). Using tu ≤ α and αN−2s‖u‖2
Xs(RN+1

+ )
≤ ‖w‖2

Xs(RN+1
+ )

we get

‖Tu‖2
Xs(RN+1

+ )
≤ ‖w‖2

Xs(RN+1
+ )

. On the other hand, we observe that for all u ∈ X1,s(RN+1
+ ) such that

P (u) = 0 it holds

LV0
(u) =

1

2

[
M̂(‖u‖2

Xs(RN+1
+ )

)−
(

1− 2s

N

)
M(‖u‖2

Xs(RN+1
+ )

)‖u‖2
Xs(RN+1

+ )

]
.

Then, from Lemma 3.6 and (M5), we deduce that LV0
(Tu) ≤ LV0

(w). By the arbitrariness of w ∈ TV0
, we

infer that Tu ∈ SV0 . Hence, SV0 6= ∅ and T : S̃V0 → SV0 is well-defined.
Finally, we show that T is injective. Let u1, u2 ∈ S̃V0

be such that Tu1 = Tu2. Then, u1(x, y) = u2(αx, αy)
for some α > 0. Since u1(·, 0) and u2(·, 0) are nontrivial solutions of (−∆)su+ V0u = f(u) in RN , we deduce
that α2s(−∆)su2(αx, 0) = (−∆)su1(x, 0) = (−∆)su2(αx, 0) which implies that (α2s− 1)(−∆)su2(·, 0) = 0 in
RN . Hence, α = 1 and u1 ≡ u2. �

Proposition 3.2. SV0
is compact in X1,s(RN+1

+ ).

Proof. Let (wn) ⊂ SV0
and set vn(x, y) := wn(αnx, αny) where

α2s
n := M(‖wn‖2Xs(RN+1

+ )
).

Then, vn is a solution to (3.11). Now we prove that vn ∈ S̃V0
and that there exists C0 > 0 such that

m0 ≤ α2s
n ≤ C2s

0 for all n ∈ N. Note that m0 ≤ α2s
n thanks to (M1). Now, by Lemma 3.1 we have

bV0 = LV0(wn)− 1

N
P (wn)

=
1

2

[
M̂
(
‖wn‖2Xs(RN+1

+ )

)
−
(

1− 2s

N

)
M
(
‖wn‖2Xs(RN+1

+ )

)
‖wn‖2x

]
.

In light of (M2) we deduce that ‖wn‖Xs(RN+1
+ ) is bounded and then (αn) is bounded.

Take φn ∈ S̃V0
. Proceeding as in the proof of Lemma 3.7 and using (M6) we can see that ‖φn‖2Xs(RN+1

+ )
≤

‖vn‖2Xs(RN+1
+ )

, tn ≤ αn and bV0 = LV0(φn,tn) ≤ LV0(wn) = bV0 , where

tn := inf
{
t ∈ (0,∞) : t2s = M(tN−2s‖φn‖2Xs(RN+1

+ )
)
}
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and φn,tn(x, y) := φn( xtn ,
y
tn

) = T (φn). Moreover, LV0
(φn,tn) = bV0

= LV0
(wn). At this point, if we show

that

‖φn‖Xs(RN+1
+ ) = ‖vn‖Xs(RN+1

+ ), (3.15)

then we have

EV0
(φn) =

s

N
‖φn‖2Xs(RN+1

+ )
=

s

N
‖vn‖2Xs(RN+1

+ )
= EV0

(vn),

where we used (4.3). Hence we deduce that vn ∈ S̃V0
. Next, we prove that (3.15) holds true. Assume by

contradiction that ‖vn‖Xs(RN+1
+ ) > ‖φn‖Xs(RN+1

+ ). Taking into account that tn ≤ αn and ‖wn‖2Xs(RN+1
+ )

=

αN−2s
n ‖vn‖2Xs(RN+1

+ )
, we get

‖φn,tn‖2Xs(RN+1
+ )

= tN−2s
n ‖φn‖2Xs(RN+1

+ )
< αN−2s

n ‖vn‖2Xs(RN+1
+ )

= ‖wn‖2Xs(RN+1
+ )

.

On the other hand, using P (φn,tn) = 0 = P (wn), we infer that

1

2

{
M̂(‖φn,tn‖2Xs(RN+1

+ )
)−

(
1− 2s

N

)
M(‖φn,tn‖2Xs(RN+1

+ )
)‖φn,tn‖2Xs(RN+1

+ )

}
= LV0

(φn,tn) = LV0
(wn) =

1

2

{
M̂(‖wn‖2Xs(RN+1

+ )
)−

(
1− 2s

N

)
M(‖wn‖2Xs(RN+1

+ )
)‖wn‖2Xs(RN+1

+ )

}
.

By (M5), (M6) in Lemma 3.7 and (3.13), it is easy to see that for any ‖φn,tn‖2Xs(RN+1
+ )

≤ t1 < t2 ≤
‖wn‖2Xs(RN+1

+ )
it holds

M̂(t1)−
(

1− 2s

N

)
M(t1)t1 = M̂(t2)−

(
1− 2s

N

)
M(t2)t2

and
M(t1)

t
2s/(N−2s)
1

=
M(t2)

t
2s/(N−2s)
2

. (3.16)

Otherwise, we have LV0(φn,tn) < LV0(wn), that is a contradiction. Moreover, in view of (3.16), we get

M(t) = k0t
2s

N−2s in [‖φn,tn‖2Xs(RN+1
+ )

, ‖wn‖2Xs(RN+1
+ )

],

for some k0 > 0. By the definitions of αn and tn, and using tN−2s
n ‖φn‖2Xs(RN+1

+ )
= ‖φn,tn‖2Xs(RN+1

+ )
, we

deduce that

t2sn = M(tN−2s
n ‖φn‖2Xs(RN+1

+ )
) = k0t

2s
n ‖φn‖

4s
N−2s

Xs(RN+1
+ )

α2s
n = M(‖wn‖2Xs(RN+1

+ )
) = M(‖vn‖2Xs(RN+1

+ )
) = k0α

2s
n ‖vn‖

4s
N−2s

Xs(RN+1
+ )

which gives ‖φn‖2Xs(RN+1
+ )

= k
−N−2s

2
0 = ‖vn‖2Xs(RN+1

+ )
and this is a contradiction.

Now, observing that wn(x, y) = vn(α−1
n x, α−1

n y), it is enough to prove that vn has a convergent subsequence
in X1,s(RN+1

+ ). Since SV0
is compact in X1,s(RN+1

+ ) (see Proposition 2.6 in [47]) we obtain the thesis. �

4. critical limiting problems

In this section we extend the previous results for the following critical limiting problem: − div(y1−2s∇w) = 0 in RN+1
+ ,

1
M(‖w‖2

Xs(RN+1
+

)
)

∂w
∂ν1−2s = −V0w(·, 0) + f(w(·, 0)) in RN , (4.1)
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where f satisfies (f1), (f ′2) and (f ′3). The study of (4.1) will be done following some arguments used in [50].
In order to find weak solutions to (4.1), we look for critical points of the energy functional LV0

: X1,s(RN+1
+ )→

R given by

LV0
(u) :=

1

2
M̂
(
‖u‖2

Xs(RN+1
+ )

)
+

1

2

∫
RN

V0u
2(x, 0) dx−

∫
RN

F (u(x, 0)) dx.

We define

TV0
:=

{
u ∈ X1,s(RN+1

+ ) \ {0} : L′V0
(u) = 0,max

RN
u(·, 0) = u(0, 0)

}
,

bV0
:= inf

u∈TV0
LV0

(u),

and
SV0

:= {u ∈ TV0
: LV0

(u) = bV0
}.

We consider the following elliptic critical problem:{
− div(y1−2s∇w) = 0 in RN+1

+ ,
∂w

∂ν1−2s = −V0w(·, 0) + f(w(·, 0)) in RN . (4.2)

Any solution w to (4.2) satisfies the following Pohozaev identity (see [5, 39,51])

N − 2s

2
‖w‖2

Xs(RN+1
+ )

−N
∫
RN

F (u(x, 0))− V0

2
u2(x, 0) dx = 0. (4.3)

Let us define

EV0
(u) :=

1

2
‖u‖2

Xs(RN+1
+ )

+
V0

2
|u(·, 0)|22 −

∫
RN

F (u(x, 0)) dx,

b̃V0 := inf
u∈T̃V0

EV0(u),

where

T̃V0 :=

{
u ∈ X1,s(RN+1

+ ) \ {0} : E ′V0
(u) = 0,max

RN
u(·, 0) = u(0, 0)

}
,

and
S̃V0 := {u ∈ T̃V0 : EV0(u) = b̃V0}.

In what follows, we show that SV0 is compact in X1,s(RN+1
+ ). Arguing as in the proof of Lemma 3.7 and

in view of results in [5, 51], we obtain that:

Lemma 4.1. Assume (M1)-(M5). Then, SV0 6= ∅ if S̃V0 6= ∅. Moreover, there exists an injective map
T : S̃V0

→ SV0
. In particular, for any u ∈ S̃V0

,

(Tu)(x, y) := u(x/tu, y/tu)

where tu := inf

{
t ∈ (0,∞) : t2s = M(tN−2s‖u‖2

Xs(RN+1
+ )

)

}
.

Lemma 4.2. Assume that S̃V0
6= ∅. Then SV0

6= ∅. Moreover, for any v ∈ SV0
there exists u ∈ S̃V0

such
that v(x, y) = u(x/hv, y/hv), where h2s

v = M(‖v‖2
Xs(RN+1

+ )
).

Proof. By the definition of T , we know that SV0
6= ∅ if S̃V0

6= ∅. Let v ∈ SV0
. Thus v satisfies (4.1) and

LV0
(v) = bV0

. Define u(x, y) := v(hx, hy) where h2s := M(‖v‖2
Xs(RN+1

+ )
). Then, u solves (4.2). Now, we show

that u ∈ S̃V0 . To do this, we prove that EV0(u) = b̃V0 . Using the Pohozaev identity, we know that

EV0
(u) =

s

N

 M(‖v‖2
Xs(RN+1

+ )
)

(‖v‖2
Xs(RN+1

+ )
)

2s
N−2s


2s−N

2s

.
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Let ũ ∈ S̃V0
. Then ṽ := T ũ = u(x/tũ, y/tũ) ∈ SV0

, where tũ is defined as in Lemma 4.1. By Lemma 3.1
(which holds even if replace (f2)-(f3) by (f ′2)-(f ′3)), we obtain that

LV0
(ṽ) =

1

2

[
M̂(‖ṽ‖2

Xs(RN+1
+ )

)−
(

1− 2s

N

)
M(‖ṽ‖2

Xs(RN+1
+ )

)‖ṽ‖2
Xs(RN+1

+ )

]
= bV0

LV0
(v) =

1

2

[
M̂(‖v‖2

Xs(RN+1
+ )

)−
(

1− 2s

N

)
M(‖v‖2

Xs(RN+1
+ )

)‖v‖2
Xs(RN+1

+ )

]
= bV0

.

(4.4)

On the other hand, by the proof of Lemma 3.6 and (M5), it is easy to see that if for some 0 ≤ t1 < t2 it
holds

M̂(t1)−
(

1− 2s

N

)
M(t1)t1 = M̂(t2)−

(
1− 2s

N

)
M(t2)t2

then
M(t1)

t
2s/(N−2s)
1

=
M(t2)

t
2s/(N−2s)
2

.

Hence, by (4.4), it follows that

EV0
(u) =

s

N

 M(‖v‖2
Xs(RN+1

+ )
)

(‖v‖2
Xs(RN+1

+ )
)

2s
N−2s


2s−N

2s

=
s

N
‖ũ‖2

Xs(RN+1
+ )

= b̃V0

that is u ∈ S̃V0
. �

Lemma 4.3. Assume that S̃V0
6= ∅. Then there exist C, c > 0 (independent of v) such that c ≤ hv ≤ C for

all v ∈ SV0
, where hv is given in Lemma 4.2.

Proof. Fix v ∈ SV0
. Then h2s

v = M(‖v‖2
Xs(RN+1

+ )
). From (M1) we have that h2s

v ≥ m0. On the other hand,
by Lemma 3.1, we see that for all v ∈ SV0 ,

LV0(v) =
1

2

[
M̂(‖v‖2

Xs(RN+1
+ )

)−
(

1− 2s

N

)
M(‖v‖2

Xs(RN+1
+ )

)‖v‖2
Xs(RN+1

+ )

]
= bV0

.

Thus, in view of (M2), we infer that supv∈SV0 hv <∞. �

Now, we recall the following result (see [5, 34,39]):

Lemma 4.4. Assume that (f1), (f ′2)-(f ′3) hold true. Then:
(i) there exists u ∈ S̃V0

such that u(·, 0) ∈ C1(RN ) ∩ L∞(RN ) and radially symmetric;
(ii) S̃V0 is compact in X1,s(RN+1

+ ).

As a consequence of Lemma 4.2, Lemma 4.3 and Lemma 4.4, we obtain that:

Proposition 4.1. Under the assumptions of Theorem 1.2 we have that:
(i) there exists u ∈ SV0

such that u(·, 0) ∈ C1(RN ) ∩ L∞(RN ) and radially symmetric;
(ii) SV0

is compact in X1,s(RN+1
+ ).

5. Proof of Theorem 1.1

In light of Section 2, to study (2.2) we look for critical points of the functional Iε : Xε → R defined as

Iε(u) =
1

2
M̂
(
‖u‖2

Xs(RN+1
+ )

)
+

1

2

∫
RN

Vε(x)u2(x, 0) dx−
∫
RN

F (u(x, 0)) dx

where

Xε :=

{
u ∈ X1,s(RN+1

+ ) :

∫
RN

Vε(x)u2(x, 0) dx <∞
}

endowed with the norm

‖u‖ε :=

(
‖u‖2

Xs(RN+1
+ )

+

∫
RN

Vε(x)u2(x, 0) dx

) 1
2

.
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It follows from (V1) that Xε ⊂ X1,s(RN+1
+ ) and

‖u‖2
X1,s(RN+1

+ )
≤ max{1, V −1

1 }‖u‖2ε ∀u ∈ Xε.

We denote by (Xε)
−1 the dual space of Xε endowed with the norm ‖T‖(Xε)−1 := sup{Tu : u ∈ Xε, ‖u‖ε ≤ 1}.

In order to obtain some convergence results and consequently results of existence for small ε > 0, we need to
modify f(t) once more. Namely, as in [23,32], we consider the following Carathéodory function

g(x, t) := χΛ(x)f(t) + (1− χΛ(x))f̂(t) for (x, t) ∈ RN × R,

and we write G(x, t) :=
∫ t

0
g(x, τ) dτ , where χΛ denotes the characteristic function of Λ, and

f̂(t) :=

{
f(t) for t < a,
min{f(t), V1

2 t} for t ≥ a,

where a ∈ (0, τ0) is such that |f(t)| ≤ V1

2 t for t ∈ (0, a]. By (f1)-(f2), it is easy to check that:

• limt→0
g(x,t)
t = limt→0

f(t)
t = 0 uniformly in x ∈ RN ,

• lim supt→∞
g(x,t)
tp ≤ lim supt→∞

f(t)
tp <∞, for all x ∈ RN .

Therefore, we consider the following modified problem: −div(y1−2s∇u) = 0 in RN+1
+ ,

1
M(‖u‖2

Xs(RN+1
+

)
)

∂u
∂ν1−2s = −Vεu(·, 0) + gε(·, u(·, 0)) in RN , (5.1)

where we set gε(x, t) := g(ε x, t). Obviously, if uε is a positive solution of (5.1) satisfying uε(x, 0) ≤ a for
x ∈ RN \ Λε, then uε is indeed a solution of (2.2). Now, inspired by [13,17,28,32], we define

Jε(u) := Pε(u) +Qε(u)

where

Pε(u) :=
1

2
M̂
(
‖u‖2

Xs(RN+1
+ )

)
+

1

2

∫
RN

Vε(x)u2(x, 0) dx−
∫
RN

Gε(x, u(x, 0)) dx

and

Qε(u) :=

(∫
RN

χε(x)u2(x, 0) dx− 1

)2

+

with

χε(x) :=

{
0 if x ∈ Λε :=

Λ

ε
,

ε−1 if x /∈ Λε.

The functional Qε will act as a penalization to force the concentration phenomena to occur inside Λ. This
type of penalization was first introduced in [17]. Clearly, Jε ∈ C1(Xε,R) and its differential is given by:

〈J ′ε(u), v〉 = M(‖u‖2
Xs(RN+1

+ )
)

∫∫
RN+1

+

y1−2s∇u∇v dxdy +

∫
RN

Vε(x)u(x, 0)v(x, 0) dx

−
∫
RN

gε(x, u(x, 0))v(x, 0) dx+ 4

(∫
RN

χε(x)u2(x, 0) dx− 1

)2

+

∫
RN

χε(x)u(x, 0)v(x, 0) dx

for all u, v ∈ Xε. We stress that a critical point of Pε is a weak solution to (5.1). In order to find solutions
concentrating in Λ as ε→ 0, we look for critical points of Jε for which Qε is zero.

Let δ :=
1

10
dist{M,RN \ Λ}. By (f3) we can choose β ∈ (0, δ) sufficiently small such that

F (T ) >
V (x)

2
T 2 for all x ∈M5β , (5.2)

where
Mβ := {z ∈ RN : inf

w∈M
|z − w| ≤ β}.
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Define a nonincreasing function φ0 ∈ C∞(R+) such that 0 ≤ φ ≤ 1, φ0 = 1 in [0, 1], φ0 = 0 in [2,∞) and
|φ′0|∞ ≤ C. In what follows, we look for solutions to (5.1) near the set

Eε :=
{
φ0(
√
| ε x− x′|2 + ε2 y2/β)W (x− (x′/ ε), y) : x′ ∈Mβ ,W ∈ SV0

}
.

Fix W ∗ ∈ SV0 and define for t > 0 and (x, y) ∈ RN+1
+

Wε,t(x, y) := φ0

(
ε

β

√
|x|2 + y2

)
W ∗

(x
t
,
y

t

)
.

Next we show that Jε has a mountain pass geometry [4]. Indeed, by (M1), (V1), (f1), (f2) and Tr(Xε) ⊂
Lq(RN ) for all q ∈ [2, 2∗s], we have

Jε(u) ≥ m0

2
‖u‖2

Xs(RN+1
+ )

+
1

2

∫
RN

Vε(x)u2(x, 0) dx− ε |u(·, 0)|22 − Cε|u(·, 0)|2
∗
s

2∗
s

≥ c1‖u‖2ε − c2‖u‖
2∗
s
ε .

Hence, there exist ρ, δ > 0 such that Jε(u) ≥ δ for ‖u‖ε = ρ.
On the other hand, using the fact that W ∗ satisfies the Pohozaev identity and (M3), we have

LV0

(
W ∗

( ·
t
,
·
t

))
=
tN

2

[
1

tN
M̂
(
tN−2s‖W ∗‖2

Xs(RN+1
+ )

)
−
(
N − 2s

N

)
M
(
‖W ∗‖2

Xs(RN+1
+ )

)
‖W ∗‖2

Xs(RN+1
+ )

]
→ −∞,

as t→∞. Then there exists t0 > 0 such that

LV0

(
W ∗

( ·
t
,
·
t

))
< −2 ∀t ≥ t0. (5.3)

Now we prove the following result:

Lemma 5.1. It holds
sup

t∈[0,t0]

|Jε(Wε,t)− LV0
(W ∗t )| → 0 as ε→ 0,

where W ∗t (x, y) := W ∗(xt ,
y
t ) for t > 0, and W ∗0 ≡Wε,0 ≡ 0.

Proof. Since supp(Wε,t(·, 0)) ⊂ Λε and supp(χε) ⊂ RN \ Λε, we have Q(Wε,t) = 0 and Gε(x,Wε,t(x, 0)) =
F (Wε,t(x, 0)) for all ε, t ≥ 0 and x ∈ RN . Hence, for all t ∈ (0, t0]

|Jε(Wε,t)− LV0(W ∗t )| ≤ 1

2
|M̂(‖Wε,t‖2Xs(RN+1

+ )
)− M̂(‖W ∗t ‖2Xs(RN+1

+ )
)|+ 1

2

∫
RN
|Vε(x)φ0(ε |x|/β)− V0|(W ∗t (x, 0))2 dx

+

∫
RN
|F (Wε,t(x, 0))− F (W ∗t (x, 0))| dx.

Note that as ε→ 0

‖Wε,t‖2Xs(RN+1
+ )

= ‖W ∗t ‖2Xs(RN+1
+ )

+ o(1) uniformly in t ∈ [0, t0]. (5.4)

Indeed,

‖Wε,t‖2Xs(RN+1
+ )

=

∫∫
RN+1

+

y1−2s|∇φ0(ε
√
|x|2 + y2/β)|2

(
W ∗

(x
t
,
y

t

))2

dxdy

+

∫∫
RN+1

+

y1−2s|φ0(ε
√
|x|2 + y2/β)|2

∣∣∣∇W ∗ (x
t
,
y

t

)∣∣∣2 dxdy
+ 2

∫∫
RN+1

+

y1−2s∇φ0(ε
√
|x|2 + y2/β)∇W ∗

(x
t
,
y

t

)
φ0(ε

√
|x|2 + y2/β)W ∗

(x
t
,
y

t

)
dxdy

=: Aε,t +Bε,t + Cε,t.
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Now, by Lemma 2.2, for any t ∈ (0, t0] we have

Aε,t ≤ C ε2

∫∫
B+

2β
ε

(0,0)\B+
β
ε

(0,0)

y1−2s
(
W ∗

(x
t
,
y

t

))2

dxdy

≤ C ε2

∫∫
B+

2β
ε

(0,0)\B+
β
ε

(0,0)

y1−2s
(
W ∗

(x
t
,
y

t

))2γ

dxdy

 1
γ
∫∫

B+
2β
ε

(0,0)\B+
β
ε

(0,0)

y1−2s dxdy

1− 1
γ

≤ C ε2

∫∫
B+

2β
ε

(0,0)\B+
β
ε

(0,0)

y1−2s
(
W ∗

(x
t
,
y

t

))2γ

dxdy

 1
γ [∫ 2β

ε

β
ε

rN+1−2s dr

]1− 1
γ

≤ C

∫∫
B+

2β
ε

(0,0)\B+
β
ε

(0,0)

y1−2s
(
W ∗

(x
t
,
y

t

))2γ

dxdy

 1
γ

≤ C

∫∫
B+

2β
t ε

(0,0)\B+
β
t ε

(0,0)

tN+2−2sy1−2s (W ∗ (x, y))
2γ
dxdy

 1
γ

≤ C

∫∫
RN+1

+ \B+
β
t0 ε

(0,0)

tN+2−2s
0 y1−2s (W ∗ (x, y))

2γ
dxdy


1
γ

→ 0 as ε→ 0. (5.5)

On the other hand, for t ∈ (0, t0], using that 0 ≤ φ0 ≤ 1 and φ0 is nonincreasing we get∣∣∣∣∣Bε,t −
∫∫

RN+1
+

y1−2s|∇W ∗
(x
t
,
y

t

)
|2 dxdy

∣∣∣∣∣
≤
∫∫

RN+1
+

y1−2s[1− (φ0(ε
√
|x|2 + y2/β))2]

∣∣∣∇W ∗ (x
t
,
y

t

)∣∣∣2 dxdy
=

∫∫
RN+1

+

tN−2sy1−2s[1− (φ0(ε t
√
|x|2 + y2/β))2] |∇W ∗ (x, y)|2 dxdy

≤
∫∫

RN+1
+

tN−2s
0 y1−2s[1− (φ0(ε t0

√
|x|2 + y2/β))2] |∇W ∗ (x, y)|2 dxdy → 0 as ε→ 0.

Since Hölder’s inequality yields Cε,t ≤ A1/2
ε,t B

1/2
ε,t , we deduce that

sup
t∈[0,t0]

Cε,t → 0 as ε→ 0.

Therefore (5.4) holds true.
Now, noting that ‖Wε,t‖2Xs(RN+1

+ )
, ‖W ∗t ‖2Xs(RN+1

+ )
≤ C for all t ∈ [0, t0] and ε > 0 sufficiently small, and

using M̂(t2)− M̂(t1) =
∫ t2
t1
M(τ) dτ and (M4), we see that∣∣∣M̂ (

‖Wε,t‖2Xs(RN+1
+ )

)
− M̂

(
‖W ∗t ‖2Xs(RN+1

+ )

)∣∣∣ ≤M(C)
∣∣∣‖Wε,t‖2Xs(RN+1

+ )
− ‖W ∗t ‖2Xs(RN+1

+ )

∣∣∣
which together with (5.4) implies that

M̂
(
‖Wε,t‖2Xs(RN+1

+ )

)
= M̂

(
‖W ∗t ‖2Xs(RN+1

+ )

)
+ o(1) uniformly in t ∈ [0, t0].

On the other hand, recalling that (see [26]) W ∗(·, 0) has the following polynomial type-decay

0 < W ∗(x, 0) ≤ C

1 + |x|N+2s
∀x ∈ RN ,
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we have

0 < W ∗t (x, 0) ≤ CtN+2s
0

tN+2s
0 + |x|N+2s

∀x ∈ RN , t ∈ (0, t0], (5.6)

which together with 0 ≤ Vε(x)φ0(ε |x|/β) ≤ max
x∈Γ0

2β(0)
V (x) and φ0(ε ·)→ 1 as ε→ 0, implies that

lim
ε→0

sup
t∈[0,t0]

∣∣∣∣∫
RN

[Vε(x)φ0(ε |x|/β)− V0](W ∗t (x, 0))2 dx

∣∣∣∣ = 0.

Finally, observing that

F (a+ b)− F (a) = b

∫ 1

0

f(a+ τb) dτ,

it follows from (f1) and (f2) that∫
RN
|F (Wε,t(x, 0))− F (W ∗t (x, 0))| dx

≤
∫
RN
|Wε,t(x, 0)−W ∗t (x, 0)|

∫ 1

0

|f(W ∗t (x, 0) + τ(Wε,t(x, 0)−W ∗t (x, 0))| dτdx

≤ C
∫
RN
|Wε,t(x, 0)−W ∗t (x, 0)|[|W ∗t (x, 0)|+ |Wε,t(x, 0)−W ∗t (x, 0)|

+ |W ∗t (x, 0)|2
∗
s−1 + |Wε,t(x, 0)−W ∗t (x, 0)|2

∗
s−1] dx.

Taking into account Wε,t(x, 0)−W ∗t (x, 0) = (φ0(ε |x|/β)−1)W ∗t (x, 0), (5.6) and φ0(ε ·)→ 1 as ε→ 0, we get

lim
ε→0

sup
t∈[0,t0]

∣∣∣∣∫
RN

F (Wε,t(x, 0))− F (W ∗t (x, 0)) dx

∣∣∣∣ = 0.

�

Notice that from (5.3) and Lemma 5.1 there exists ε0 sufficiently small such that

|Jε(Wε,t0)− LV0
(W ∗t0)| ≤ −LV0

(Wt0)− 2 Jε(Wε,t0) < −2 for ε ∈ (0, ε0).

Therefore, we can define the minimax level

cε := inf
γ∈Γε

max
t∈[0,1]

Jε(γ(t))

where
Γε := {γ ∈ C([0, 1], Xε) : γ(0) = 0, γ(1) = Wε,t0}.

Lemma 5.2. limε→0 cε = cV0
.

Proof. We first prove that
lim sup
ε→0

cε ≤ cV0
. (5.7)

Since Wε,t → 0 in Xε as t→ 0, and setting

γε(τ) := Wε,τt0 for τ ∈ (0, 1], γε(0) = 0, (5.8)

we see that γε ∈ Γε and thus
cε ≤ max

t∈[0,1]
Jε(γε(t)) = max

t∈[0,t0]
Jε(Wε,t). (5.9)

By Lemma 5.1, Pohozaev Identity and (M5) we deduce that

max
t∈[0,t0]

Jε(Wε,t) = max
t∈[0,t0]

LV0

(
W ∗

( ·
t
,
·
t

))
+ o(1)

= max
t∈[0,t0]

[
1

2
M̂
(
tN−2s‖W ∗‖2

Xs(RN+1
+ )

)
− tN

(
N − 2s

2N

)
M
(
‖W ∗‖2

Xs(RN+1
+ )

)
‖W ∗‖2

Xs(RN+1
+ )

]
+ o(1)

≤ LV0
(W ∗) + o(1) = cV0

+ o(1).

Next, we show that
lim inf
ε→0

cε ≥ cV0 . (5.10)



FRACTIONAL KIRCHHOFF EQUATIONS IN RN 21

Assume by contradiction that lim infε→0 cε < cV0
. Then there exist α > 0, εn → 0 and γn ∈ Γεn such that

maxt∈[0,1] Jεn(γn(t)) < cV0
− α. Take εn such that

V0

2
εn[1 + (1 + cV0

)2] < min{α, 1} and Pεn(γn(1)) < −2.

Denoting εn by ε and γn by γ, since Pε(γ(0)) = 0, we can find t0 ∈ (0, 1) such that

Pε(γ(t0)) = −1 and Pε(γ(t)) ∀t ∈ [0, t0].

Hence,
Qε(γ(t)) ≤ Jε(γ(t)) + 1 < cV0

− α+ 1 < cV0
+ 1

and consequently ∫
RN\Λε

γ(t)2 dx ≤ ε[1 + (1 + cV0
)2] for t ∈ [0, t0].

Since G(x, t) ≤ F (t) we obtain for t ∈ [0, t0]

Pε(γ(t)) ≥ LV0
(γ(t))− V0

2

∫
RN\Λε

γ(t)2 dx

≥ LV0
(γ(t))− V0

2
ε[1 + (1 + cV0

)2]

which yields

LV0
(γ(t0)) ≤ V0

2
ε[1 + (1 + cV0

)2]− 1 < 0.

On the other hand, the mountain pass level corresponds to the least energy level (see Lemma 3.5), so we
have

max
t∈[0,t0]

LV0
(γ(t)) ≥ cV0

.

From
cV0 − α > max

t∈[0,1]
LV0

(γ(t)) ≥ max
t∈[0,t0]

Pε(γ(t))

we get

cV0
− α > cV0

− V0

2
ε[1 + (1 + cV0

)2] > cV0
− α

and this gives a contradiction.
Now, we define

dε := max
t∈[0,1]

Jε(γε(t)), (5.11)

where γε is given in (5.8). Then, by (5.7), (5.9) and (5.10) we see that cε ≤ dε and

lim
ε→0

dε = lim
ε→0

cε = cV0
.

This ends the proof of lemma. �

Now we use the notations
Jbε := {w ∈ Xε : Jε(w) ≤ b},

and for A ⊂ Xε

Ab := {w ∈ Xε : inf
v∈A
‖w − v‖ε ≤ b}.

The next lemma will be crucial to prove the main result of this work.

Lemma 5.3. There exists d0 > 0 such that for any (εn) and (wεn) with

lim
n→∞

εn = 0, wεn ∈ Ed0εn , lim
n→∞

Jεn(wεn) ≤ cV0 , lim
n→∞

‖J ′εn(wεn)‖(Xεn )−1 = 0,

there exists, up to a subsequence, (zn) ⊂ RN , x0 ∈M and W ∈ SV0 such that

lim
n→∞

| εn zn − x0| = 0 and lim
n→∞

‖wεn − φ0(εn
√
|x− zn|2 + y2/β)W (x− zn, y)‖εn = 0.
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Proof. For simplicity, we write ε instead of εn and the same will be done for the subsequences. By the
definition of Ed0ε and the compactness of SV0

and Mβ , there exist W0 ∈ SV0
and (xε) ⊂ Mβ such that for

all ε > 0 small enough ∥∥∥∥∥wε − φ0

(
ε

β

√∣∣∣x− xε
ε

∣∣∣2 + y2

)
W0

(
x− xε

ε
, y
)∥∥∥∥∥

ε

≤ 2d0, (5.12)

and, as ε→ 0,

xε → x0 ∈Mβ .

In what follows, we prove that there exist (wε,1), (wε,2) ⊂ Xε, (kε), (jε) ⊂ N such that
(i) kε ≤

√
βε/5 ε and kε →∞ as ε→ 0, 0 ≤ jε ≤ kε − 1, |wε,1|, |wε,2| ≤ |wε|,

(ii) wε,1 = wε in B+

( 2βε
ε )+(5jε+1)kε

(xεε , 0), wε,2 = wε in RN+1
+ \B+

( 2βε
ε )+(5jε+4)kε

(xεε , 0)

(iii) supp(wε,1) ⊂ B+

( 2βε
ε )+(5jε+2)kε

(xεε , 0), supp(wε,2) ⊂ RN+1
+ \B+

( 2βε
ε )+(5jε+3)kε

(xεε , 0),

(iv) ‖wε − wε,1 − wε,2‖ε → 0 as ε→ 0,
(v) ‖wε‖Xs0 (Bjε,ε ) → 0 and ∫∫

Bjε,ε

y1−2s|wε|2γ dxdy → 0 as ε→ 0,

where

Bjε,ε := B+

( 2βε
ε )+5(jε+1)kε

(xε
ε
, 0
)
\B+

( 2βε
ε )+5jεkε

(xε
ε
, 0
)
,

and ∫
Γjε,ε

Vε(x)|wε(x, 0)|2 dx→ 0 as ε→ 0,

where

Γjε,ε := Γ0
( 2βε
ε )+5(jε+1)kε

(xε
ε

)
\ Γ0

( 2βε
ε )+5jεkε

(xε
ε

)
.

Let kε ∈ N be such that kε ≤
√

β
5 ε and kε → ∞ as ε → 0, and put w̃ε(x, y) := wε(x + xε

ε , y). By (5.12),

Lemma 2.2-(i) and φ0(ε
√
|x|2 + y2/β) = 0 in RN+1

+ \B+
2β
ε

(0, 0) we have∫∫
RN+1

+ \B+
2β
ε

(0,0)

y1−2s|∇w̃ε|2 dxdy +

∫
RN\Γ0

2β
ε

(0)

V (ε x+ xε)|w̃ε(x, 0)|2 dx

+

∫∫
RN+1

+ \B+
2β
ε

(0,0)

y1−2s|w̃ε|2γ dxdy

 1
γ

≤ Cd0. (5.13)

For all j = 0, 1, . . . , kε − 1, we set

B̃j,ε := B+

( 2βε
ε )+5(j+1)kε

(0, 0) \B+

( 2βε
ε )+5jkε

(0, 0) and Γ̃j,ε := Γ0
( 2βε
ε )+5(j+1)kε

(0) \ Γ0
( 2βε
ε )+5jkε

(0).

From (5.13) we deduce that

kε−1∑
j=0

∫∫
B̃j,ε

y1−2s|∇w̃ε|2 dxdy +

kε−1∑
j=0

∫
Γ̃j,ε

V (ε x+ xε)|w̃ε(x, 0)|2 dx

+

kε−1∑
j=0

(∫∫
B̃j,ε

y1−2s|w̃ε|2γ dxdy

) 1
γ

≤ Cd0.
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Hence, there exists jε ∈ {0, 1, . . . , kε − 1} such that∫∫
B̃jε,ε

y1−2s|∇w̃ε|2 dxdy +

∫
Γ̃jε,ε

V (ε x+ xε)|w̃ε(x, 0)|2 dx

+

(∫∫
B̃jε,ε

y1−2s|w̃ε|2γ dxdy

) 1
γ

≤ Cd0/kε → 0 as ε→ 0. (5.14)

Define two cut-off functions (ξε,1) and (ξε,2) such that

ξε,1 :=

 1 in B+
2β
ε +(5jε+1)kε

(0, 0),

0 in RN+1
+ \B+

2β
ε +(5jε+2)kε

(0, 0),

and

ξε,2 :=

 0 in B+
2β
ε +(5jε+3)kε

(0, 0),

1 in RN+1
+ \B+

2β
ε

+ (5jε + 4)kε(0, 0),

and 0 ≤ ξε,1, ξε,2 ≤ 1, |∇ξε,1|, |∇ξε,2| ≤ C
kε
, and we set

w̃ε,i := ξε,iw̃ε and wε,i(x, y) := w̃ε,i

(
x− xε

ε
, y
)

for i = 1, 2.

Since wε ∈ Xε, we see that wε,i ∈ Xεi for i = 1, 2. Hence, (i)-(iii) hold true. Now, direct calculations show
that

‖wε − wε,1 − wε,2‖2ε ≤ C
∫∫

B+
2β
ε

+(5jε+4)kε
(0,0)\B+

2β
ε

+(5jε+1)kε
(0,0)

y1−2s|∇w̃ε|2 dxdy

+ C

∫
Γ0

2β
ε

+(5jε+4)kε
(0)\Γ0

2β
ε

+(5jε+1)kε
(0)

V (ε x+ xε)|w̃ε|2 dx

+ C

∫∫
B+

2β
ε

+(5jε+2)kε
(0,0)\B+

2β
ε

+(5jε+1)kε
(0,0)

y1−2s|∇ξε,1|2|w̃ε|2 dxdy

+ C

∫∫
B+

2β
ε

+(5jε+4)kε
(0,0)\B+

2β
ε

+(5jε+3)kε
(0,0)

y1−2s|∇ξε,2|2|w̃ε|2 dxdy

=: (I)ε + (II)ε + (III)ε + (IV )ε.

Using (5.14) we deduce that (I)ε, (II)ε = o(1). Moreover, arguing as in (5.5), it follows from (5.14) that

(III)ε ≤ C

∫∫
B+

2β
ε

+(5jε+2)kε
(0,0)\B+

2β
ε

+(5jε+1)kε
(0,0)

y1−2s|w̃ε|2γ dxdy

 1
γ

= o(1).

In a similar fashion we can prove that (IV )ε = o(1). In conclusion, (iv) holds true. Moreover, by (5.14), we
see that (v) is satisfied. Taking into account (i)-(v), (f1)-(f2) and the boundedness of (wε) in Xε we get

‖wε‖2Xs(RN+1
+ )

= ‖wε,1‖2Xs(RN+1
+ )

+ ‖wε,2‖2Xs(RN+1
+ )

+ o(1), (5.15)∫
RN

Vε(x)w2
ε(x, 0) dx =

∫
RN

Vε(x)w2
ε,1(x, 0) dx+

∫
RN

Vε(x)w2
ε,2(x, 0) dx+ o(1), (5.16)∫

RN
F (wε(x, 0)) dx =

∫
RN

F (wε,1(x, 0)) dx+

∫
RN

F (wε,2(x, 0)) dx+ o(1). (5.17)

By (M1), we know that

M̂(t1 + t2) = M̂(t1) +

∫ t1+t2

t1

M(τ) dτ ≥ M̂(t1) +m0t2,
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which together with (5.15)-(5.17), the boundedness of (wε) in Xε and G(x, t) ≤ F (t) implies that

Jε(wε) ≥ Iε(wε,1) +
m0

2
‖wε,2‖2Xs(RN+1

+ )
+

1

2

∫
RN

Vε(x)w2
ε,2(x, 0) dx−

∫
RN

F (wε,2(x, 0)) dx+ o(1). (5.18)

Now, we prove that ‖wε,2‖ε → 0 as ε→ 0. By (5.12), (iv) and the definition of wε,2, we see that

‖wε,2‖ε ≤

∥∥∥∥∥wε,1 − φ0

(
ε

β

√∣∣∣x− xε
ε

∣∣∣2 + y2

)
W0

(
x− xε

ε
, y
)∥∥∥∥∥

ε

+ 2d0 + o(1)

=

∥∥∥∥∥wε,1 − φ0

(
ε

β

√∣∣∣x− xε
ε

∣∣∣2 + y2

)
W0

(
x− xε

ε
, y
)∥∥∥∥∥

Xε

(
B+

2β
ε

+(5jε+2)kε
(0,0)

) + 2d0 + o(1)

≤ ‖wε,2‖
Xε

(
B+

2β
ε

+(5jε+2)kε
(0,0)

) + 2d0 + o(1)

= 4d0 + o(1),

which yields

lim sup
ε→0

‖wε,2‖ε ≤ 4d0. (5.19)

On the other hand, using 〈J ′ε(wε), wε,1〉 = o(1), 〈Q′ε(wε), wε,2〉 = 〈Q′ε(wε,2), wε,2〉 ≥ 0, (M1), (V1), (f1)-(f2),
(iii), (iv), (5.19), the boundedness of (wε) in Xε, we get

m0

∫∫
RN+1

+

y1−2s|∇wε,2|2 dxdy +

∫
RN

Vε(x)w2
ε,2(x, 0) dx

≤M(‖wε‖2ε)
∫∫

RN+1
+

y1−2s|∇wε,2|2 dxdy +

∫
RN

Vε(x)w2
ε,2(x, 0) dx

≤M(‖wε‖2ε)
∫∫

RN+1
+

y1−2s|∇wε,2|2 dxdy +

∫
RN

Vε(x)w2
ε,2(x, 0) dx+ 〈Q′(wε,2), wε,2〉

=

∫
RN

gε(x,wε,2(x, 0))wε,2(x, 0) dx+ o(1)

≤ δ
∫
RN

w2
ε,2(x, 0) dx+ Cδ

∫
RN
|wε,2(x, 0)|2

∗
s + o(1)

≤ δ

V1

∫
RN

Vε(x)w2
ε,2(x, 0) dx+ Cδ|wε,2(x, 0)|2

∗
s

2∗
s

+ o(1).

Then, choosing δ > 0 sufficiently small and using Lemma 2.1 we deduce that ‖wε,2‖2ε ≤ C‖wε,2‖
2∗
s
ε + o(1).

Taking d0 > 0 small enough, we deduce that ‖wε,2‖ε = o(1). Hence, in view of (5.18), we have

Jε(wε) ≥ Iε(wε,1) + o(1). (5.20)

Up to a subsequence, we can find w̃ ∈ X1,s(RN+1
+ ) such that

w̃ε,1 ⇀ w̃ in X1,s(RN+1
+ ) and w̃ε,1(·, 0) ⇀ w̃(·, 0) in Lqloc(R

N ) ∀q ∈ [1, 2∗s). (5.21)

In what follows we show that

w̃ε,1(·, 0)→ w̃(·, 0) in Lq(RN ) ∀q ∈ (2, 2∗s). (5.22)

Indeed, by vanishing Lions-type lemma (see Lemma 3.3 in [36]), we assume by contradiction that there exists
r > 0 such that

lim inf
ε→0

sup
z∈RN

∫
Γ0
1(z)

|w̃ε,1(x, 0)− w̃(x, 0)|2 dx = 2r > 0.

Then, for ε > 0 small, there exists zε ∈ RN such that∫
Γ0
1(zε)

|w̃ε,1(x, 0)− w̃(x, 0)|2 dx ≥ r > 0. (5.23)
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By (5.21) we see that (zε) is unbounded, so, up to a subsequence, |zε| → ∞. Then, by (5.23),

lim inf
ε→0

∫
Γ0
1(zε)

|w̃ε,1(x, 0)|2 dx ≥ r > 0. (5.24)

Since ξε,1(x, 0) = 0 for |x| ≥ ( 2β
ε ) + (5jε + 2)kε, we deduce that |zε| < ( 2β

ε ) + (5jε + 3)kε for ε > 0 small
enough. Therefore, we may assume that

ε zε → z0 ∈ Γ0
3β(0) and w̄ε(x, y) := w̃ε,1(x+ zε, y) ⇀ w̄(x, y) in X1,s(RN+1

+ ). (5.25)

Now, we show that w̄ satisfies{
−div(y1−2s∇w̄) = 0 in RN+1

+ ,
1
α0

∂w̄
∂ν1−2s = −V (x0 + z0)w̄(·, 0) + f(w̄(·, 0)) in RN , (5.26)

where
α0 := lim

ε→0
M(‖wε‖2Xs(RN+1

+ )
).

Fix k ≥ 1. Since x0 + z0 ∈ M4β ⊂ Λ, there exists n0 = n0(k) ∈ N such that ε x + xε + ε zε ∈ Λ for all
x ∈ Γ0

k(0) and n ≥ n0. By the definition of χε and g(x, t) it follows that〈
Q′(wε), φ

(
· − xε

ε
− zε

)〉
= 0 and g(ε x+ xε + ε zε, t)φ = f(t)φ,

for all n ≥ n0 and φ ∈ C∞c (B+
k (0, 0) ∪ Γ0

k(0)). From 〈J ′ε(wε), φ(· − xε
ε − zε)〉 = o(1), (iv) and ‖wε,2‖ε = o(1)

we can deduce that

o(1) = M(‖wε‖2Xs(RN+1
+ )

)

∫∫
RN+1

+

y1−2s∇w̄ε∇φdxdy

+

∫
RN

V (ε x+ xε + ε zε)w̄ε(x, 0)φ(x, 0) dx−
∫
RN

f(w̄ε(x, 0))φ(x, 0) dx.

Note that by (M1) and the boundedness of (wε) in Xε it holds m0 ≤ α0 ≤ C. Then, by (5.25) and the
arbitrariness of k we get

0 = α0

∫∫
RN+1

+

y1−2s∇w̄∇φdxdy +

∫
RN

V (x0 + z0)w̄(x, 0)φ(x, 0) dx−
∫
RN

f(w̄(x, 0))φ(x, 0) dx,

for all φ ∈ C∞c (RN+1
+ ), which proves the claim.

Since w̄ 6= 0 by (5.24), it follows from the Pohozaev identity that

dV (x0+z0) ≤
s

N
α0

∫
RN+1

+

y1−2s|∇w̄|2 dxdy, (5.27)

where
dV (x0+z0) := inf

{
Lα0,V (x0+z0)(u) : u ∈ X1,s(RN+1

+ ) \ {0} : L′α0,V (x0+z0)(u) = 0
}

and
Lα0,V (x0+z0)(u) :=

α0

2
‖u‖2

Xs(RN+1
+ )

+
V (x0 + z0)

2

∫
RN

u2(x, 0) dx−
∫
RN

F (u(x, 0)) dx.

We observe that, by the results in [7], it turns out that dV (x0+z0) > 0. Then, for R > 0 large enough we get

lim inf
ε→0

s

N
α0

∫∫
B+
R(zε+( xεε ),0)

y1−2s|∇wε|2 dxdy = lim inf
ε→0

s

N
α0

∫∫
B+
R(zε+( xεε ),0)

y1−2s|∇wε,1|2 dxdy

= lim inf
ε→0

s

N
α0

∫∫
B+
R(0,0)

y1−2s|∇w̄ε|2 dxdy

≥ s

N
α0

∫∫
B+
R(0,0)

y1−2s|∇w̄|2 dxdy

≥ 1

2

s

N
α0

∫∫
RN+1

+

y1−2s|∇w̄|2 dxdy

≥ 1

2
dV (x0+z0) > 0.
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On the other hand, arguing as in (5.5), it follows from (5.12) and |zε| → ∞ that

α0

∫∫
B+
R(zε+( xεε ),0)

y1−2s|∇wε|2 dxdy

≤ C
∫∫

B+
R(zε+( xεε ),0)

y1−2s

∣∣∣∣∣∇
(
φ0

(
ε

β

√∣∣∣x− xε
ε

∣∣∣2 + y2

)
W0

(
x− xε

ε
, y
))∣∣∣∣∣

2

dxdy + Cd0

≤ C
∫∫

B+
R(zε,0)

y1−2s|∇W0|2 dxdy + C ε2

∫∫
B+
R(zε,0)

y1−2s|W0|2 dxdy + Cd0

≤ C
∫∫

B+
R(zε,0)

y1−2s|∇W0|2 dxdy + C ε2R2

(∫∫
B+
R(zε,0)

y1−2s|W0|2γ dxdy

) 1
2γ

+ Cd0

= Cd0 + o(1)

which leads to a contradiction for d0 > 0 small enough. Consequently, (5.22) holds true.
Then, by (f1)-(f2) and (5.22), we have as ε→ 0∫

RN
F (w̃ε,1(x, 0)) dx→

∫
RN

F (w̃(x, 0)) dx and
∫
RN

f(w̃ε,1(x, 0))w̃ε,1(x, 0) dx→
∫
RN

f(w̃(x, 0))w̃(x, 0) dx.

(5.28)

Moreover, we can see that as ε→ 0∫
RN

g(ε x+ xε, w̃ε(x, 0))w̃ε,1(x, 0) dx→
∫
RN

f(w̃(x, 0))w̃(x, 0) dx. (5.29)

Indeed, using xε → x0 ∈Mβ ⊂ Λ and the definition of w̃ε,1, for all x ∈ Γ0
2β
ε +(5jε+2)kε

(0) we have

g(ε x+ xε, w̃ε(x, 0))w̃ε,1(x, 0) = f(w̃ε(x, 0))w̃ε,1(x, 0), (5.30)

since ε x+ xε ∈M4β ⊂ Λ for all x ∈ Γ0
2β
ε +(5jε+2)kε

(0) and ε > 0 small. Furthermore, as ε→ 0∫
RN

f(w̃ε(x, 0))w̃ε,1(x, 0) dx =

∫
RN

f(w̃ε,1(x, 0))w̃ε,1(x, 0) dx+ o(1), (5.31)

because (f1),(f2) and (5.22) yield

lim sup
ε→0

∣∣∣∣∫
RN

[f(w̃ε(x, 0))− f(w̃ε,1(x, 0))]w̃ε,1(x, 0) dx

∣∣∣∣
= lim sup

ε→0

∣∣∣∣∣∣
∫

Γ0
2β
ε

+(5jε+2)kε
(0)\Γ0

2β
ε

+(5jε+1)kε
(0)

[f(w̃ε(x, 0))− f(w̃ε,1(x, 0))]w̃ε,1(x, 0) dx

∣∣∣∣∣∣
≤ δC + Cδ lim sup

ε→0
|w̃ε,1(·, 0)|Lp+1(RN\Γ0

2β/ ε
(0))

≤ δC + Cδ

[
lim sup
ε→0

|w̃ε,1(·, 0)− w̃(·, 0)|p+1 + lim sup
ε→0

∫
RN\Γ0

2β/ ε
(0)

|w̃(x, 0)|p+1 dx

]
= δC ∀δ > 0.

Gathering (5.28), (5.30) and (5.31) we get (5.29).
Now, we note that, arguing as before, w̃ satisfies{

−div(y1−2s∇w̃) = 0 in RN+1
+ ,

1
α0

∂w̃
∂ν1−2s = −V (x0)w̃(·, 0) + f(w̃(·, 0)) in RN , (5.32)

with
α0 := lim

ε→0
M(‖wε‖2Xs(RN+1

+ )
) = lim

ε→0
M(‖wε,1‖2Xs(RN+1

+ )
) = lim

ε→0
M(‖w̃ε,1‖2Xs(RN+1

+ )
),

where in the second identity we used that ‖wε −wε,1‖ε = o(1) thanks to (iv) and ‖wε,2‖ε = o(1), and in the
third one that w̃ε,1(x, y) = wε,1(x+ xε

ε , y).
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Taking into account (5.21), (5.29), (5.32), (iv) and 〈J ′ε(wε), wε,1〉 = o(1), ‖wε,2‖ε = o(1), 〈Q′ε(wε), wε,1〉 = 0
and w̃ε,1(x, y) = wε,1(x+ xε

ε , y), we have

α0

∫∫
RN+1

+

y1−2s|∇w̃|2 dxdy +

∫
RN

V (x0)w̃2(x, 0) dx

≤ lim inf
ε→0

[
M(‖wε‖2Xs(RN+1

+ )
)

∫∫
RN+1

+

y1−2s|∇w̃ε,1|2 dxdy +

∫
RN

V (ε x+ xε)w̃
2
ε,1(x, 0) dx

]

≤ lim sup
ε→0

[
M(‖wε‖2Xs(RN+1

+ )
)

∫∫
RN+1

+

y1−2s|∇w̃ε,1|2 dxdy +

∫
RN

V (ε x+ xε)w̃
2
ε,1(x, 0) dx

]

= lim sup
ε→0

[
M(‖wε‖2Xs(RN+1

+ )
)

∫∫
RN+1

+

y1−2s∇wε∇wε,1 dxdy +

∫
RN

Vε(x)wε(x, 0)wε,1(x, 0) dx

]

= lim sup
ε→0

∫
RN

gε(x,wε(x, 0))wε,1(x, 0) dx

= lim
ε→0

∫
RN

g(ε x+ xε, w̃ε(x, 0))w̃ε,1(x, 0) dx

=

∫
RN

f(w̃(x, 0))w̃(x, 0) dx

= α0

∫∫
RN+1

+

y1−2s|∇w̃|2 dxdy +

∫
RN

V (x0)w̃2(x, 0) dx

which yields

lim
ε→0

∫∫
RN+1

+

y1−2s|∇wε,1|2 dxdy = lim
ε→0

∫∫
RN+1

+

y1−2s|∇w̃ε,1|2 dxdy =

∫∫
RN+1

+

y1−2s|∇w̃|2 dxdy (5.33)

and

lim
ε→0

∫
RN

V (ε x)w2
ε,1(x, 0) dx = lim

ε→0

∫
RN

V (ε x+ xε)w̃
2
ε,1(x, 0) dx =

∫
RN

V (x0)w̃2(x, 0) dx. (5.34)

In particular,
α0 = M(‖w̃‖2

Xs(RN+1
+ )

).

Putting together (5.20), (5.28), (5.33), (5.34) we deduce that

lim inf
ε→0

Jε(wε) ≥ lim inf
ε→0

Iε(wε,1) ≥ LV (x0)(w̃)

which combined with (5.12) gives
LV (x0)(w̃) ≤ cV0 .

Since w̃ 6= 0, it follows from (5.2) that
LV (x0)(w̃) ≥ cV (x0).

Then, using the fact that x0 ∈Mβ ⊂ Λ, the above inequalities and the monotonicity of m 7→ cm (see Remark
3.1), we have that V (x0) = V0 and thus x0 ∈ M. At this point, it is clear that there exist W ∈ SV0 and
z0 ∈ RN such that w̃(x, y) = W (x− z0, y).
On the other hand, observing that

V (x0) = V0 ≤ V (ε x+ xε) on Γ0
2β
ε +(5jε+2)kε

(0),

we combine (5.33) with (5.34) to infer that w̃ε,1 → w̃ in X1,s(RN+1
+ ) as ε→ 0, which implies that

lim
ε→0

∥∥∥∥∥wε − φ0

(
ε

β

√∣∣∣x− (xε
ε

+ z0

)∣∣∣2 + y2

)
W
(
x−

(xε
ε

+ z0

)
, y
)∥∥∥∥∥

ε

= 0.

This ends the proof of lemma. �
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Corollary 5.1. For any d ∈ (0, d0) there exist constants ω > 0 and εd > 0 such that ‖J ′ε(w)‖(Xε)−1 ≥ ω for
w ∈ Jdεε ∩ (Ed0ε \ Edε ) and ε ∈ (0, εd). Here dε is defined as in (5.11).

Proof. Assume by contradiction that there exist d ∈ (0, d0), (εn) and (wn) such that

εn ∈
(

0,
1

n

)
, wn ∈ J

dεn
εn ∩ (Ed0εn \ E

d
εn), ‖J ′εn(wn)‖(Xεn )−1 <

1

n
.

By Lemma 5.3, we can find (zn) ⊂ RN , x0 ∈M and W ∈ SV0
such that

lim
n→∞

| εn zn − x0| = 0 and lim
n→∞

‖wn − φ0(εn
√
|x− zn|2 + y2/β)W (x− zn, y)‖εn = 0,

which imply that wn ∈ Edεn for n sufficiently large. This is impossible because wn ∈ Ed0εn \ E
d
εn . �

Lemma 5.4. Given λ > 0 there exist ε0 > 0 and d0 > 0 small enough such that

Jε(w) > cV0
− λ for all w ∈ Ed0ε and ε ∈ (0, ε0).

Proof. If w ∈ Eε then there exist W ∈ SV0 and x′ ∈Mβ such that

w(x, y) = φ0(
√
| ε x− x′|2 + ε2 y2/β)W (x− (x′/ ε), y).

Using LV0(W ) = cV0 , (V2) and G(x, t) ≤ F (t) we get

Jε(w)− cV0
≥ 1

2

[
M̂(‖w‖2

Xs(RN+1
+ )

)− M̂(‖W‖2
Xs(RN+1

+ )
)
]

+
V0

2

∫
RN

(φ2
0(ε |x|/β)− 1)W 2(x, 0) dx

−
∫
RN

F (φ2
0(ε |x|/β)W (x, 0))− F (W (x, 0)) dx

independently of x′ ∈ Mβ . Arguing as in the proof of Lemma 5.1, we can see that there exists ε0 > 0 such
that

Jε(w)− cV0 > −
λ

2
for all w ∈ Eε and ε ∈ (0, ε0).

Now, if v ∈ Edε , then there exists w ∈ Eε such that ‖w−v‖ε ≤ d. Hence, v = w+z with ‖z‖ε ≤ d. Observing
that Qε(w) = 0, we have

Jε(v)− Jε(w) ≥ 1

2
[M̂(‖w + z‖2

Xs(RN+1
+ )

)− M̂(‖w‖2
Xs(RN+1

+ )
)] +

1

2

∫
RN

Vε(x)[(w(x, 0) + z(x, 0))2 − w2(x, 0)] dx

−
∫
RN

Gε(x,w(x, 0) + z(x, 0))−Gε(x,w(x, 0)) dx.

Since Eε is uniformly bounded for ε ∈ (0, ε0) (see the estimates in the proof of Lemma 5.1), we obtain that
for ε ∈ (0, ε0)

|‖w + z‖2ε − ‖w‖2ε| ≤ ‖z‖2ε + 2‖w‖ε‖z‖ε ≤ d2 + Cd→ 0 as d→ 0.

Moreover, noting that M̂(t2)− M̂(t1) =
∫ t2
t1
M(τ) dτ and (M5) yield

|M̂(‖w + z‖2
Xs(RN+1

+ )
)− M̂(‖w‖2

Xs(RN+1
+ )

)| ≤M(C)|‖w + z‖2
Xs(RN+1

+ )
− ‖z‖2

Xs(RN+1
+ )
| → 0 as d→ 0,

we can find d0 > 0 small enough such that

Jε(v) > Jε(w)− λ

2
> cV0

− λ ∀v ∈ Ed0ε ∀ ε ∈ (0, ε0).

This ends the proof of lemma. �

By Corollary 5.1 and Lemma 5.4, we fix d1 ∈ (0, d03 ) and corresponding ω > 0 and ε0 > 0 such that, for
any ε ∈ (0, ε0),

‖J ′ε(w)‖(Xε)−1 ≥ ω for all w ∈ Jdεε ∩ (Ed0ε \ Ed1ε )

Jε(w) >
cV0

2
for all w ∈ Ed0ε .
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Lemma 5.5. There exists α > 0 such that

|t− 1/t0| ≤ α implies that γε(t) ∈ Ed1ε for all ε ∈ (0, ε0),

where γε is given by (5.8) and t0 was chosen in (5.3).

Proof. Firstly, we note that there exists C0 > 0 such that∥∥∥∥φ0

(
ε

β

√
|x|2 + y2

)
v

∥∥∥∥
ε

≤ C0‖v‖X1,s(RN+1
+ ) ∀ ε ∈ (0, ε0) ∀v ∈ X1,s(RN+1

+ ).

Since the map ψ : [0, t0] → X1,s(RN+1
+ ) defined as ψ(t) := W ∗t is continuous, we can find σ > 0 such that

‖W ∗t −W ∗‖X1,s(RN+1
+ ) <

d1
C0

whenever |t − 1| ≤ σ. Hence, if |tt0 − 1| ≤ σ, then |t − 1
t0
| ≤ σ

t0
=: α and this

yields

‖γε(t)−Wε,1‖ε =

∥∥∥∥φ0

(
ε

β

√
|x|2 + y2

)
(W ∗tt0 −W

∗)

∥∥∥∥
ε

≤ C0‖W ∗tt0 −W
∗‖X1,s(RN+1

+ ) < d1.

Since Wε,1 ∈ Eε (recall that 0 ∈M and W ∗ ∈ SV0
), we deduce that γε(t) ∈ Ed1ε . �

Lemma 5.6. For α given in Lemma 5.5 there exist ρ > 0 and ε0 > 0 such that

Jε(γε(t)) < cV0 − ρ, for any ε ∈ (0, ε0) and |t− 1/t0| ≥ α.

Proof. By (M5) and (5.3), we know that t = 1 is a maximum point of LV0
(W ∗t ) in [0, t0] (see the proof of

Lemma 3.5). Then, we find ρ > 0 such that

LV0(W ∗t ) < cV0 − 2ρ for |t− 1| ≥ t0α.
On the other hand, by Lemma 5.1, there exists ε0 > 0 such that

sup
t∈[0,t0]

|Jε(Wε,t)− LV0(W ∗t )| < ρ for ε ∈ (0, ε0).

Consequently, for |t− 1| ≥ t0α and ε ∈ (0, ε0), we have

Jε(Wε,t) ≤ LV0(W ∗t ) + |Jε(Wε,t)− LV0(W ∗t )| < cV0 − 2ρ+ ρ = cV0 − ρ.
�

In the light of Lemma 5.5 and Lemma 5.6, we can argue as in the proof of Proposition 5.2 in [32] (see
also [13,28,35]), to obtain the following result that we state without giving the details.

Lemma 5.7. There exists ε̄ > 0 such that for all ε ∈ (0, ε̄] there exists a sequence (wn,ε) ⊂ Jdε+εε ∩Ed0ε such
that J ′ε(wn,ε)→ 0 in (Xε)

−1 as n→∞.

Now we are ready to give the proof of the main result of this section.

Proof of Theorem 1.1. By Lemma 5.7, there exists ε̄ > 0 such that for all ε ∈ (0, ε̄] there exists a sequence
(wn,ε) ⊂ Jdε+εε ∩ Ed0ε such that J ′ε(wn,ε) → 0 in (Xε)

−1 as n → ∞. Since (wn,ε) is bounded in Xε, up to a
subsequence, as n→∞, we have

wn,ε ⇀ wε in Xε, (5.35)
and

λn,ε :=

(∫
RN

χε(x)w2
n,ε(x, 0) dx− 1

)
+

→ λε. (5.36)

Then, it is easy to verify that{
−div(y1−2s∇wε) = 0 in RN+1

+ ,
1
αε

∂wε
∂ν1−2s = −Vεwε(·, 0)− 4λεχεwε(·, 0) + gε(x,wε(·, 0)) in RN , (5.37)

where
αε := lim

n→∞
M(‖wn,ε‖2Xs(RN+1

+ )
).

By (M1), (M4) and the boundedness of (wn,ε) in Xε we know that

m0 ≤ αε ≤ C ∀ ε ∈ (0, ε̄]. (5.38)
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Next, we show that (wn,ε) is tight in Xs(RN+1
+ ) (see definition 3.2.1 in [25]). To prove this, for all fixed

ε ∈ (0, ε̄], take R > 0 such that Λε ⊂ Γ0
R(0), and set φR(x, y) := φ̄(

√
|x|2 + y2/R) where φ̄ ∈ C∞(R+) is

such that φ̄ = 0 in [0, 1], φ̄ = 1 in [2,∞), 0 ≤ φ̄ ≤ 1 and |φ̄′|∞ ≤ C. Since (φRwn,ε) is bounded in Xε for
each ε ∈ (0, ε̄], we deduce that 〈J ′ε(wn,ε), φRwn,ε〉 → 0 as n→∞, and so, by the definition of gε, we get

αε

∫∫
RN+1

+

y1−2s|∇wn,ε|2φR dxdy +

∫
RN

Vε(x)w2
n,ε(x, 0)φR(x, 0) dx

≤ 1

2

∫
RN

Vε(x)w2
n,ε(x, 0)φR(x, 0) dx− αε

∫∫
RN+1

+

y1−2swn,ε∇wn,ε∇φR dxdy. (5.39)

Arguing as in (5.5), and using Hölder’s inequality, (5.38), (5.35) and Lemma 2.2-(ii), we get

lim sup
n→∞

∣∣∣∣∣αε
∫∫

RN+1
+

y1−2swn,ε∇wn,ε∇φR dxdy

∣∣∣∣∣
≤ C

R
lim sup
n→∞

(∫∫
RN+1

+

y1−2s|∇wn,ε|2 dxdy

) 1
2
(∫∫

B+
2R(0,0)\B+

R(0,0)

y1−2s|wn,ε|2 dxdy

) 1
2


≤ C

R

(∫∫
B+

2R(0,0)\B+
R(0,0)

y1−2s|wε|2 dxdy

) 1
2

≤ C

(∫∫
B+

2R(0,0)\B+
R(0,0)

y1−2s|wε|2γ dxdy

) 1
2γ

→ 0 as R→∞. (5.40)

Putting together (5.38), (5.39) and (5.40) we obtain

lim
R→∞

lim sup
n→∞

∫∫
RN+1

+ \B+
2R(0,0)

y1−2s|∇wn,ε|2 dxdy +

∫
RN\Γ0

2R(0)

Vε(x)w2
n,ε(x, 0) dx = 0, (5.41)

which implies that (wn,ε) is tight in Xε. In particular, by (5.41) and the compactness of Hs(RN ) ⊂ L2
loc(RN ),

we deduce that wn,ε(·, 0) → wε(·, 0) in L2(RN ) as n → ∞. Hence, by interpolation, wn,ε(·, 0) → wε(·, 0) in
Lq(RN ) for all q ∈ [2, 2∗s). By the definition of gε, (f1)-(f2), we have as n→∞∫

RN
gε(x,wn,ε(x, 0))wn,ε(x, 0) dx→

∫
RN

gε(x,wε(x, 0))wε(x, 0) dx. (5.42)

In the light of (5.35), (5.37), (5.42), 〈J ′ε(wn,ε), wn,ε〉 → 0 and arguing as at the end of the proof of Lemma
5.3, we deduce that

wn,ε → wε in Xε as n→∞, αε = M(‖wε‖2Xs(RN+1
+ )

) and λε =

(∫
RN

χε(x)w2
ε(x, 0) dx− 1

)
+

. (5.43)

Since SV0
is compact in X1,s(RN+1

+ ), it is easy to check that 0 /∈ Ed0ε for ε > 0, d0 > 0 small. Hence,
wε ∈ Ed0ε ∩ Jdε+ε is a nontrivial solution to (5.37).

Now, for any sequence (εn) such that εn → 0 as n→∞, by Lemma 5.3 there exist, up to a subsequence,
(zn) ⊂ RN , x0 ∈M and W ∈ SV0 such that

lim
n→∞

| εn zn − x0| = 0 (5.44)

and

lim
n→∞

‖wεn − φ0(εn
√
|x− zn|2 + y2/β)W (x− zn, y)‖εn = 0,

which implies that

lim
n→∞

‖w̄εn −W‖X1,s(RN+1
+ ) = 0, (5.45)
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where w̄εn(x, y) := wεn(x+ zn, y). In view of (5.37), (5.38), (5.43) and (5.45), we can use a Moser iteration
scheme (see for instance [6, 11,25]) and repeat the same arguments in [3, 9, 11,37] to deduce that

lim
|x|→∞

w̄εn(x, 0) = 0 uniformly for εn small, (5.46)

which guarantees the existence of a constant ρ > 0 such that f(w̃εn(x, 0)) ≤ V0

2 w̃εn(x, 0) for all |x| ≥ ρ and
εn small. When |x| ≤ ρ, it follows from (5.44) that Γ0

εn ρ(εn zn) ⊂ Λ for εn small enough, and so

gεn(x+ zn, w̄εn(x, 0)) = f(w̄εn(x, 0)) for εn small. (5.47)

From (5.46) and (f1), we can find R > 0 big enough such that

f(w̄εn(x, 0)) ≤ 1

2
V (εn x+ εn zn)w̄εn(x, 0) for x ∈ RN \ Γ0

R(0).

On the other hand, arguing as in [3, 8, 9], we see that

|w̄εn(x, 0)| ≤ C

1 + |x|N+2s
for εn small,

for some C > 0 independent of εn. Then, noting that RN \ (Λεn − zn) ⊂ RN \ Γ0
β
εn

(0), we obtain

ε−1
n

∫
RN\Λεn

w2
εn(x, 0) dx = ε−1

n

∫
RN\(Λεn−zn)

w̄2
εn(x, 0) dx

≤ C ε−1
n

∫
RN\Γ0

β
εn

(0)

1

(1 + |x|N+2s)2
dx→ 0 as n→∞,

which implies that Qεn(wεn) = 0 for εn small enough. This together with (5.47) implies that wεn is a solution
to (2.2). Hence, uεn(x) := wεn( xεn , 0) is a solution to (1.1). Since uε ∈ L∞(RN ), uε ≥ 0 in RN , V and f are
continuous functions, and using (M1), from the Harnack inequality [19,33] we have that uε > 0 in RN .

Now, let Pn be a global maximum point of w̄εn(·, 0). Since w̄εn solves (5.1) with Vεn replaced by Vεn(·+zn),
it follows from (V1), (f1)-(f2) that

V1|w̄εn(·, 0)|22 ≤
V1

2
|w̄εn(·, 0)|22 + C|w̄εn(·, 0)|2

∗
s−2
∞ |w̄εn(·, 0)|22

which implies that |w̄εn(·, 0)|∞ ≥ δ > 0 for all n ∈ N. Then, w̄εn(Pn, 0) ≥ δ > 0 for all n ∈ N, and (Pn) is
bounded by (5.46). Noting that uεn(x) = w̄εn( xεn − zn, 0), we deduce that xn := εn Pn + εn zn is a global
maximum point of uεn . From (5.44) we get xn → x0 ∈M as n→∞. Finally, we can argue as in [8,9,37] to
deduce the polynomial decay of uε.

�

6. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. We borrow some arguments used in [50].
In view of Proposition 4.1 there exists κ > 0 such that

sup
u∈SV0

|u(·, 0)|∞ = sup
u∈S̃V0

|u(·, 0)|∞ < κ. (6.1)

For any k > maxt∈[0,κ] f(t), define fk(t) := min{f(t), k}. Now, we consider the truncated problem{
ε2sM(ε2s−N [u]2s)(−∆)su+ V (x)u = fk(u) in RN ,
u ∈ Hs(RN ), u > 0 in RN . (6.2)

In what follows, we prove that, for small ε > 0, there exists a positive solution vε to (6.2) satisfying the
properties of Theorem 1.2. Clearly, vε is a solution to (1.1) if |vε|∞ < κ. We consider the limiting problem{

M([u]2s)(−∆)su+ V0u = fk(u) in RN ,
u ∈ Hs(RN ), u > 0 in RN , (6.3)
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and the corresponding extended problem −div(y1−2s∇w) = 0 in RN+1
+ ,

1
M(‖w‖2

Xs(RN+1
+

)
)

∂w
∂ν1−2s = −V0w(·, 0) + fk(w(·, 0)) in RN , (6.4)

whose associated energy functional is given by

LkV0
(u) =

1

2
M̂(‖u‖2

Xs(RN+1
+ )

) +
V0

2
|u(·, 0)|22 −

∫
RN

Fk(u(x, 0)) dx.

Lemma 6.1. Under the same assumptions of Theorem 1.2, (6.4) admits a positive ground state solution.

Proof. Firstly we show that fk satisfies (f1)-(f3). It is clear that (f1)-(f2) are true. Now, for any u ∈ S̃V0
,

we know that u fulfills the Pohozaev identity

N − 2s

N
‖u‖2

Xs(RN+1
+ )

= N

∫
RN

F (u(x, 0))− V0

2
u2(x, 0) dx,

which yields ∫
RN

F (u(x, 0))− V0

2
u2(x, 0) dx ≥ 0.

If F (u(x, 0)) − V0

2 u
2(x, 0) ≤ 0 for all x ∈ RN , then F (u(x,0))

u2(x,0) = V0 > 0 for all x ∈ RN . Using (f ′1) and

that u(x, 0) → 0 as |x| → ∞, we get F (u(x,0))
u2(x,0) → 0 as |x| → ∞, that is a contradiction. Then, we can find

x0 ∈ RN such that F (u(x0, 0)) > V0

2 u
2(x0, 0). Since |u(x0, 0)| < κ, it follows that Fk(u(x, 0)) = F (u(x, 0))

for all x ∈ RN . Hence, letting T = u(x0, 0) > 0, we obtain that Fk(T ) > V0

2 T
2, that is (f3) is satisfied.

From [7,16,51] we know that
(−∆)su+ V0u = fk(u) in RN

admits a radially symmetric ground state solution. At this point, we apply Lemma 3.7 to deduce the
assertion. �

Let SkV0
be the set of ground state solutions u to (6.3) such that u(0, 0) = maxx∈RN u(x, 0). Then, by

Lemma 6.1 we deduce that SkV0
6= ∅.

Lemma 6.2. For k > maxt∈[0,κ] f(t), we have

SkV0
= SV0 .

Proof. In the light of Lemma 4.1 and Lemma 4.2 it is enough to prove that S̃kV0
= S̃V0 . This is proved in

Corollary 4.3 in [39]. �

Now we provide the proof of the main result of this section.

Proof of Theorem 1.2. Since fk satisfies (f1)-(f3), we can invoke Theorem 1.1 to deduce that, fixed k >
maxt∈[0,κ] f(t), there exists ε0 > 0 such that (6.2) admits a positive solution vε for ε ∈ (0, ε0). Moreover, there
exists U ∈ SkV0

and a maximum point xε of vε such that limε→0 dist(xε,M) = 0 and vε(ε ·+ xε)→ U(·+ z0)

as ε→ 0 in Hs(RN ), for some z0 ∈ RN . Letting wε = vε(ε ·+ xε) we see that wε satisfies

M(‖wε‖2Xs(RN+1
+ )

)(−∆)swε + Vε

(
x+

xε
ε

)
wε = f(wε) in RN .

Clearly,
m0 ≤ inf

ε<ε0
M(‖wε‖2Xs(RN+1

+ )
) ≤ sup

ε<ε0

M(‖wε‖2Xs(RN+1
+ )

) <∞.

Then, we can argue as in Step 2 of the proof of Theorem 1.1 in [39] and use Lemma 6.2 to infer that there
exists ε∗ > 0 such that |vε|∞ < κ for all ε ∈ (0, ε∗), which implies that fk(vε) = f(vε) in RN . In conclusion,
vε is a positive solution to (1.1). �
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