We deal with the multiplicity and concentration of positive solutions for the following fractional Schrödinger-Poisson-type system with critical growth: (equation required), where > 0 is a small parameter, s (3 4, 1), t (0, 1), (-Δ)α, with α {s,t}, is the fractional Laplacian operator, V is a continuous positive potential and f is a superlinear continuous function with subcritical growth. Using penalization techniques and Ljusternik-Schnirelmann theory, we investigate the relation between the number of positive solutions with the topology of the set where the potential attains its minimum value
Multiplicity and concentration results for a class of critical fractional Schrödinger-Poisson systems via penalization method / Ambrosio, V.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 22:1(2020). [10.1142/S0219199718500785]
Multiplicity and concentration results for a class of critical fractional Schrödinger-Poisson systems via penalization method
Ambrosio V.
2020-01-01
Abstract
We deal with the multiplicity and concentration of positive solutions for the following fractional Schrödinger-Poisson-type system with critical growth: (equation required), where > 0 is a small parameter, s (3 4, 1), t (0, 1), (-Δ)α, with α {s,t}, is the fractional Laplacian operator, V is a continuous positive potential and f is a superlinear continuous function with subcritical growth. Using penalization techniques and Ljusternik-Schnirelmann theory, we investigate the relation between the number of positive solutions with the topology of the set where the potential attains its minimum valueFile | Dimensione | Formato | |
---|---|---|---|
Ambrosio-SPS.pdf
Open Access dal 04/12/2019
Descrizione: Electronic version of an article published as Communications in Contemporary Mathematics, 22, 1, 2020, 10.1142/S0219199718500785 © World Scientific Publishing Company, https://www.worldscientific.com/worldscinet/ccm
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
472.05 kB
Formato
Adobe PDF
|
472.05 kB | Adobe PDF | Visualizza/Apri |
Ambrosio-CCMS0219199718500785.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
658.22 kB
Formato
Adobe PDF
|
658.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.