We deal with the multiplicity and concentration of positive solutions for the following fractional Schrödinger-Poisson-type system with critical growth: (equation required), where > 0 is a small parameter, s (3 4, 1), t (0, 1), (-Δ)α, with α {s,t}, is the fractional Laplacian operator, V is a continuous positive potential and f is a superlinear continuous function with subcritical growth. Using penalization techniques and Ljusternik-Schnirelmann theory, we investigate the relation between the number of positive solutions with the topology of the set where the potential attains its minimum value

Multiplicity and concentration results for a class of critical fractional Schrödinger-Poisson systems via penalization method / Ambrosio, V.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 22:1(2020). [10.1142/S0219199718500785]

Multiplicity and concentration results for a class of critical fractional Schrödinger-Poisson systems via penalization method

Ambrosio V.
2020-01-01

Abstract

We deal with the multiplicity and concentration of positive solutions for the following fractional Schrödinger-Poisson-type system with critical growth: (equation required), where > 0 is a small parameter, s (3 4, 1), t (0, 1), (-Δ)α, with α {s,t}, is the fractional Laplacian operator, V is a continuous positive potential and f is a superlinear continuous function with subcritical growth. Using penalization techniques and Ljusternik-Schnirelmann theory, we investigate the relation between the number of positive solutions with the topology of the set where the potential attains its minimum value
2020
File in questo prodotto:
File Dimensione Formato  
Ambrosio-SPS.pdf

Open Access dal 04/12/2019

Descrizione: Electronic version of an article published as Communications in Contemporary Mathematics, 22, 1, 2020, 10.1142/S0219199718500785 © World Scientific Publishing Company, https://www.worldscientific.com/worldscinet/ccm
Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Tutti i diritti riservati
Dimensione 472.05 kB
Formato Adobe PDF
472.05 kB Adobe PDF Visualizza/Apri
Ambrosio-CCMS0219199718500785.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 658.22 kB
Formato Adobe PDF
658.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/273346
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact