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MULTIPLICITY AND CONCENTRATION RESULTS FOR A CLASS OF

CRITICAL FRACTIONAL SCHRÖDINGER-POISSON SYSTEMS VIA

PENALIZATION METHOD

VINCENZO AMBROSIO

Abstract. We deal with the multiplicity and concentration of positive solutions for the following
fractional Schrödinger-Poisson type system with critical growth:{

ε2s(−∆)su+ V (x)u+ φu = f(u) + |u|2
∗
s−2u in R3,

ε2t(−∆)tφ = u2 in R3,

where ε > 0 is a small parameter, s ∈ ( 3
4
, 1), t ∈ (0, 1), (−∆)α, with α ∈ {s, t}, is the fractional

Laplacian operator, V is a continuous positive potential and f is a superlinear continuous function
with subcritical growth. Using penalization techniques and Ljusternik-Schnirelmann theory, we
investigate the relation between the number of positive solutions with the topology of the set
where the potential attains its minimum value.

1. Introduction

In this paper we focus our attention on the multiplicity and concentration of positive solutions
for the following critical fractional nonlinear Schrödinger-Poisson system:{

ε2s(−∆)su+ V (x)u+ φu = f(u) + |u|2∗s−2u in R3,
ε2t(−∆)tφ = u2 in R3,

(1.1)

where ε > 0 is a small parameter, s ∈ (3
4 , 1), t ∈ (0, 1), 2∗s = 6

3−2s is the critical Sobolev exponent,

and (−∆)α, with α ∈ {s, t}, is the fractional Laplacian operator which may be defined for any
u : R3 → R belonging to the Schwartz class by

(−∆)αu(x) = C(3, α)P.V.

∫
R3

u(x)− u(y)

|x− y|3+2α
dy (x ∈ R3),

where P.V. stands for the Cauchy principal value and C(3, α) is a normalizing constant; see [16].
It is well-known that the study of elliptic equations driven by fractional powers of the Laplacian
has received an enormous interest from the mathematical community because nonlocal problems
arise in many physical situations in which one has to consider long-range or anomalous diffusions.
Moreover, (−∆)α appears as the infinitesimal generator of a Lévy process [9]. For more details
and applications we refer the interested reader to [16, 28] and references therein.
Along the paper we will assume that the potential V : R3 → R is a continuous function satisfying
the following hypotheses introduced by del Pino and Felmer in [15]:
(V1) there exists V0 > 0 such that V0 = infx∈R3 V (x),
(V2) there exists a bounded open set Λ ⊂ R3 such that

V0 < min
∂Λ

V and M = {x ∈ Λ : V (x) = V0} 6= ∅.

2010 Mathematics Subject Classification. 47G20, 35R11, 35A15, 58E05.
Key words and phrases. Fractional Schrödinger-Poisson system; Variational Methods; Ljusternik-Schnirelmann

theory.

1



2 V. AMBROSIO

Concerning the nonlinearity f : R → R we assume that it is a continuous function such that
f(t) = 0 for t ≤ 0 and satisfies the following conditions:
(f1) f(t) = o(t3) as t→ 0,
(f2) there exist q, σ ∈ (4, 2∗s), C0 > 0 such that

f(t) ≥ C0t
q−1 ∀t > 0, lim

t→∞

f(t)

tσ−1
= 0,

(f3) there exists ϑ ∈ (4, σ) such that 0 < ϑF (t) ≤ tf(t) for all t > 0,

(f4) the map t 7→ f(t)
t3

is increasing in (0,∞).
We note that when φ = 0, then (1.1) reduces to a fractional Schrödinger equation [26] of the type

ε2s(−∆)su+ V (x)u = h(x, u) in R3, (1.2)

which has been widely investigated by many authors in the last two decades; see [5, 17, 19,
25, 34, 36] and references therein. Felmer et al. [19] dealt with the existence, regularity and
symmetry of positive solutions to (1.2) when V = 1 and h is a subcritical nonlinearity satisfying
the Ambrosetti-Rabinowitz condition [4]. Secchi [34] studied (1.2) under suitable assumptions
on the behavior of the potential V at infinity. Shang et al. [36] established some existence and
multiplicity results for a fractional Schrödinger equation with critical growth and requiring the
following global assumption on the potential V introduced by Rabinowitz [32]:

V∞ = lim inf
|x|→∞

V (x) > V0 = inf
x∈RN

V (x) > 0. (1.3)

Alves and Miyagaki [3], by means of the penalization technique and the extension method [14],
focused on the existence and concentration of positive solutions to (1.2) when V verifies (V1)-(V2)
and h is a subcritical nonlinearity. Subsequently, the multiplicity and concentration of positive
solutions to (1.2) with V verifying (V1)-(V2), have been considered for critical and supercritical
nonlinearities; see [6, 24]. We also mention the papers [11, 35] for some interesting results about
critical problems in bounded domains and [7, 8] for critical fractional periodic problems.

We observe that if s = t = 1, system (1.1) becomes the classical Schrödinger-Poisson system{
− ε2 ∆u+ V (x)u+ µφu = g(u) in R3,
− ε2 ∆φ = u2 in R3,

(1.4)

which describes systems of identical charged particles interacting each other in the case that
effects of magnetic field could be ignored and its solution represents, in particular, a standing
wave for such a system. For a more detailed physical description of this system we refer to [12].
Concerning some classical existence and multiplicity results for Schrödinger-Poisson systems we
quote [10, 22, 23, 33, 40, 43]. For instance, Ruiz [33] gave some existence and nonexistence
results to (1.4) when g(u) = up, p ∈ (1, 5) and µ > 0. Azzollini et al. [10] investigated the
existence of nontrivial solutions when g verifies Beresticky-Lions type assumptions. Wang et al.
[40] considered the existence and concentration of positive solutions to (1.4) involving subcritical
nonlinearities. He and Li [23] obtained an existence result for a critical Schrödinger-Poisson
system, assuming that the potential V satisfies (V1)-(V2).

In the fractional scenario, only few results for fractional Schrödinger-Poisson systems are avail-
able in literature. Giammetta [21] studied the local and global well-posedness of a fractional
Schrödinger-Poisson system in which the fractional diffusion appears only in the second equa-
tion in (1.1). Teng [39] analyzed the existence of ground state solutions for (1.1) with critical
Sobolev exponent, by combining Pohozaev-Nehari manifold, arguments of Brezis-Nirenberg type,
the monotonicity trick and global compactness Lemma. In [42] Zhang et al. used a perturbation
approach to prove the existence of positive solutions to (1.1) with V (x) = µ > 0 and g is a
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general nonlinearity having subcritical or critical growth. They also investigated the asymptotic
behavior of solutions as µ → 0. Liu and Zhang [27] studied multiplicity and concentration of
solutions to (1.1) when the potential V satisfies (1.3). Murcia and Siciliano [30] showed that, for
suitably small ε, the number of positive solutions to (1.1) is estimated below by the Ljusternik-
Schnirelmann category of the set of minima of the potential.
Motivated by the above papers, in this work we aim to study the multiplicity and concentration of
solutions to (1.1) under the local conditions (V1)-(V2) on the potential V and assuming (f1)-(f4)
for the nonlinearity f . In order to state precisely our main result, we recall that if Y is a given
closed set of a topological space X, we denote by catY (Y ) the Ljusternik-Schnirelmann category
of Y in X, that is the least number of closed and contractible sets in X which cover Y ; see [41]
for more details. Then we are able to prove the following result:

Theorem 1.1. Assume that (V1)-(V2) and (f1)-(f4) hold. Then, for any δ > 0 such that

Mδ = {x ∈ R3 : dist(x,M) ≤ δ} ⊂ Λ,

there exists εδ > 0 such that problem (1.1) admits at least catMδ
(M) positive solutions in Hε ×

Dt,2(R3). Moreover, if (uε, φε) denotes one of these solutions and xε ∈ R3 is a global maximum
point of uε, then

lim
ε→0

V (xε) = V0,

and there exists C > 0 such that

0 < uε(x) ≤ Cε3+2s

ε3+2s + |x− xε|3+2s
for all x ∈ R3.

In what follows we give a sketch of the proof of Theorem 1.1 which is obtained applying ap-
propriate variational arguments. Firstly, the lack of information about the behavior of potential
V at infinity is overcame considering a modified problem in the spirit of the penalization method
introduced by del Pino and Felmer in [15] (see also [1, 2]); see Section 3. Since the nonlinear-
ity f is only continuous, we cannot apply standard Nehari manifold arguments developed, for
example, in [2, 27, 22, 36], and for this reason we make use of some variants of critical point
theorems due to Szulkin and Weth [38]. We recall that a similar approach has been adopted
in [20] to study the multiplicity and concentration behavior of positive solutions for a subcriti-
cal Kirchhoff problem. Anyway, the presence of two fractional Laplacian operators and critical
Sobolev exponent makes our analysis more complicated and intriguing with respect to the ones in
[20] and new arguments will be needed to attack our problem. Moreover, in order to cover some
compactness properties for the functional Jε associated to the modified problem, we invoke the
Concentration-Compactness Lemma for the fractional Laplacian [17, 31]. Since we are interested
in obtaining multiple critical points, we use a technique introduced by Benci and Cerami [13],
which consists in making precise comparisons between the category of some sublevel sets of Jε
and the category of the set M . Finally, we show that the solutions of the modified problem are
also solutions to (1.1), by combining a Moser iteration technique [29] conveniently adapted in the
fractional setting and some useful estimates for Bessel operators established in [3, 19].
The paper is organized as follows. In Section 2 we recall some lemmas which we will use along
the paper. In Section 3 we introduce the functional setup. In Section 4 we establish an existence
result for the modified problem. In Section 5 we deal with the autonomous problem associated
with (1.1). In Section 6 we introduce some tools needed to obtain a multiplicity result for the
modified problem. In the last section we provide the proof of Theorem 1.1.
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2. Preliminaries

We start giving some notations and collecting some useful preliminary results on fractional
Sobolev spaces; see [16, 28] for more details.
If A ⊂ R3, we denote by |u|Lq(A) the Lq(A)-norm of a function u : R3 → R, and by |u|q its

Lq(R3)-norm. Let us define Ds,2(R3) as the completion of C∞c (R3) with respect to

[u]2 =

∫∫
R6

|u(x)− u(y)|2

|x− y|3+2s
dxdy.

Then we consider the fractional Sobolev space

Hs(R3) = {u ∈ L2(R3) : [u] <∞}
endowed with the norm

‖u‖2 = [u]2 + |u|22.
We recall the following main embeddings for the fractional Sobolev spaces:

Theorem 2.1. [16] Let s ∈ (0, 1). Then Hs(R3) is continuously embedded in Lp(R3) for any
p ∈ [2, 2∗s] and compactly in Lploc(R

3) for any p ∈ [1, 2∗s).

The following lemma is a version of the well-known concentration-compactness principle:

Lemma 2.1. [19] If {un}n∈N is a bounded sequence in Hs(R3) and if

lim
n→∞

sup
y∈R3

∫
BR(y)

|un|2dx = 0

where R > 0, then un → 0 in Lr(R3) for all r ∈ (2, 2∗s).

We also recall the following useful technical result.

Lemma 2.2. [31] Let u ∈ Ds,2(R3). Let ϕ ∈ C∞c (R3) and for each r > 0 we define ϕr(x) =
ϕ(x/r). Then, [uϕr] → 0 as r → 0. If in addition ϕ = 1 in a neighborhood of the origin, then
[uϕr]→ [u] as r →∞.

Now, let s, t ∈ (0, 1) such that 4s+ 2t ≥ 3. Using Theorem 2.1 we can see that

Hs(R3) ⊂ L
12

3+2t (R3). (2.1)

For any u ∈ Hs(R3), the linear functional Lu : Dt,2(R3)→ R given by

Lu(v) =

∫
R3

u2v dx

is well defined and continuous in view of Hölder inequality and (2.1). Indeed

|Lu(v)| ≤
(∫

R3

|u|
12

3+2tdx

) 3+2t
6
(∫

R3

|v|2∗t dx
) 1

2∗t ≤ C‖u‖2‖v‖Dt,2 , (2.2)

where

‖v‖2Dt,2 =

∫∫
R6

|v(x)− v(y)|2

|x− y|3+2t
dxdy.

Then, by the Lax-Milgram Theorem there exists a unique φtu ∈ Dt,2(R3) such that

(−∆)tφtu = u2 in R3.

Therefore, we obtain the following t-Riesz formula

φtu(x) = ct

∫
R3

u2(y)

|x− y|3−2t
dy (x ∈ R3), ct = π−

3
2 2−2tΓ(3− 2t)

Γ(t)
. (2.3)
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In the sequel, we will omit the constant ct in order to lighten the notation. Finally, we state the
following useful properties whose proofs can be found in [27, 39]:

Lemma 2.3. If 4s+ 2t ≥ 3, then for all u ∈ Hs(R3) we have:
(1) ‖φtu‖Dt,2 ≤ C|u|2 12

3+2t

≤ C‖u‖2ε and
∫
R3 φ

t
uu

2dx ≤ Ct|u|4 12
3+2t

. Moreover φtu : Hs(R3)→ Dt,2(R3)

is continuous and maps bounded sets into bounded sets;
(2) φtu ≥ 0 in R3;
(3) if y ∈ R3 and ū(x) = u(x+ y) then φtū(x) = φtu(x+ y) and

∫
R3 φ

t
ūū

2dx =
∫
R3 φ

t
uu

2dx;

(4) φtru = r2φtu for all r ∈ R;
(5) if un ⇀ u in Hs(R3) then φtun ⇀ φtu in Dt,2(R3);

(6) if un ⇀ u in Hs(R3) then
∫
R3 φ

t
unu

2dx =
∫
R3 φ

t
(un−u)(un − u)2dx+

∫
R3 φ

t
uu

2dx+ on(1).

(7) if un → u in Hs(R3) then φtun → φtu in Dt,2(R3) and
∫
R3 φ

t
unu

2dx→
∫
R3 φ

t
uu

2dx.

3. Functional Setting

In order to study (1.1), we use the change of variable x 7→ ε x and we will look for solutions to{
(−∆)su+ V (ε x)u+ φtuu = f(u) + |u|2∗s−2u in R3,
u ∈ Hs(R3), u > 0 in R3,

(3.1)

where φtu is given by (2.3). In what follows we introduce a penalization function [15] which will
be useful to obtain our results.

Let K > 2 and a > 0 such that f(a) + a2∗s−1 = V0
K a and we define

f̃(t) =

{
f(t) + (t+)2∗s−1 if t ≤ a
V0
K t if t > a,

and
g(x, t) = χΛ(x)(f(t) + (t+)2∗s−1) + (1− χΛ(x))f̃(t).

It is easy to check that g satisfies the following properties:

(g1) limt→0
g(x,t)
t3

= 0 uniformly with respect to x ∈ R3,

(g2) g(x, t) ≤ f(t) + t2
∗
s−1 for all x ∈ R3, t > 0,

(g3) (i) 0 ≤ ϑG(x, t) < g(x, t)t for all x ∈ Λ and t > 0,

(ii) 0 ≤ 2G(x, t) < g(x, t)t ≤ V0
K t

2 for all x ∈ R3 \ Λ and t > 0,

(g4) for each x ∈ Λ the function g(x,t)
t3

is increasing in (0,∞), and for each x ∈ R3 \Λ the function
g(x,t)
t3

is increasing in (0, a).
Let us consider the following modified problem{

(−∆)su+ V (ε x)u+ φtuu = g(ε x, u) in R3,
u ∈ Hs(R3), u > 0 in R3.

(3.2)

It is clear that weak solutions to (3.2) are critical points of the following functional

Jε(u) =
1

2
‖u‖2ε +

1

4

∫
R3

φtuu
2dx−

∫
R3

G(ε x, u)dx,

defined for all u ∈ Hε where

Hε =

{
u ∈ Hs(R3) :

∫
R3

V (ε x)u2dx <∞
}

is endowed with the norm

‖u‖2ε = [u]2 +

∫
R3

V (ε x)u2dx.
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Obviously, Hε is a Hilbert space with inner product

(u, v)ε =

∫∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|3+2s
dxdy +

∫
R3

V (ε x)uvdx.

We also note that Jε ∈ C1(Hε,R) and its differential is given by

〈J ′ε(u), v〉 = (u, v)ε +

∫
R3

φtuuv −
∫
R3

g(ε x, u)vdx ∀u, v ∈ Hε.

Let us introduce the Nehari manifold associated to (3.2), that is,

Nε = {u ∈ Hε \ {0} : 〈J ′ε(u), u〉 = 0},
and we denote by

H+
ε = {u ∈ Hε : | supp(u+) ∩ Λ| > 0}

and S+
ε = Sε ∩ H+

ε , where Sε is the unitary sphere in Hε. Then Hε = TuS+
ε ⊕ Ru and TuS+

ε =
{v ∈ Hε : (u, v)ε = 0}. Let us note that Jε satisfies the following properties:

Lemma 3.1. The functional Jε has a Mountain-Pass geometry:
(a) there exist α, ρ > 0 such that Jε(u) ≥ α with ‖u‖ε = ρ;
(b) there exists e ∈ Hε such that ‖e‖ε > ρ and Jε(e) < 0.

Proof. (a) Taking into account (g1), (g2), (f2), for any ξ > 0 we can find Cξ > 0 such that

Jε(u) ≥ 1

2
‖u‖2ε −

∫
R3

G(ε x, u) dx ≥ 1

2
‖u‖2ε − ξC‖u‖4ε − CξC‖u‖2

∗
s
ε .

Then there exist α, ρ > 0 such that Jε(u) ≥ α with ‖u‖ε = ρ.
(b) In view of (g3)-(i) and Lemma 2.3-(4), we can see that for any u ∈ H+

ε and τ > 0

Jε(τu) ≤ τ2

2
‖u‖2ε +

τ4

4

∫
R3

φtuu
2dx−

∫
R3

G(ε x, τu) dx

≤ τ2

2
‖u‖2ε +

τ4

4

∫
R3

φtuu
2dx−

∫
Λε

G(ε x, τu) dx

≤ τ2

2
‖u‖2ε +

τ4

4

∫
R3

φtuu
2dx− C1τ

ϑ

∫
Λε

(u+)ϑ dx+ C2| supp(u+) ∩ Λε|, (3.3)

for some positive constants C1 and C2. Since ϑ ∈ (4, 2∗s), we get Jε(τu)→ −∞ as τ → +∞. �

Since f is only continuous, the next results will be crucial to overcome the non-differentiability
of Nε and the incompleteness of S+

ε .

Lemma 3.2. Assume that (V1)-(V2) and (f1)-(f4) hold true. Then,
(i) For each u ∈ H+

ε , let hu : R+ → R be defined by hu(t) = Jε(tu). Then, there is a unique
tu > 0 such that

h′u(t) > 0 in (0, tu)

h′u(t) < 0 in (tu,∞);

(ii) there exists τ > 0 independent of u such that tu ≥ τ for any u ∈ S+
ε . Moreover, for each

compact set K ⊂ S+
ε there is a positive constant CK such that tu ≤ CK for any u ∈ K;

(iii) The map m̂ε : H+
ε → Nε given by m̂ε(u) = tuu is continuous and mε := m̂ε|S+ε is a

homeomorphism between S+
ε and Nε. Moreover m−1

ε (u) = u
‖u‖ε ;

(iv) If there is a sequence {un}n∈N ⊂ S+
ε such that dist(un, ∂S+

ε )→ 0, then ‖mε(un)‖ε →∞ and
Jε(mε(un))→∞.
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Proof. (i) We note that hu ∈ C1(R+,R), and in view of Lemma 3.1, we can see that hu(0) = 0,
hu(t) > 0 for t > 0 small enough and hu(t) < 0 for t > 0 sufficiently large. Then there exists
tu > 0 such that h′u(tu) = 0 and tu is a global maximum for hu. This implies that tuu ∈ Nε.
Now, we show the uniqueness of a such tu. Suppose by contradiction that there exist t1 > t2 > 0
such that h′u(t1) = h′u(t2) = 0, that is

t1‖u‖2ε + t31

∫
R3

φtuu
2dx =

∫
R3

g(ε x, t1u)u dx (3.4)

t2‖u‖2ε + t32

∫
R3

φtuu
2dx =

∫
R3

g(ε x, t2u)u dx. (3.5)

Using (g4) we can see that

‖u‖2ε
(

1

t21
− 1

t22

)
=

∫
R3

[
g(ε x, t1u)

(t1u)3
− g(ε x, t2u)

(t2u)3

]
u4dx

=

∫
R3\Λε

[
g(ε x, t1u)

(t1u)3
− g(ε x, t2u)

(t2u)3

]
u4dx+

∫
Λε

[
g(ε x, t1u)

(t1u)3
− g(ε x, t2u)

(t2u)3

]
u4dx

≥
∫
R3\Λε

[
g(ε x, t1u)

(t1u)3
− g(ε x, t2u)

(t2u)3

]
u4dx

=

∫
(R3\Λε)∩{t2u>a}

[
g(ε x, t1u)

(t1u)3
− g(ε x, t2u)

(t2u)3

]
u4dx

+

∫
(R3\Λε)∩{t2u≤a<t1u}

[
g(ε x, t1u)

(t1u)3
− g(ε x, t2u)

(t2u)3

]
u4dx

+

∫
(R3\Λε)∩{t1u<a}

[
g(ε x, t1u)

(t1u)3
− g(ε x, t2u)

(t2u)3

]
u4dx =: I + II + III.

Let us observe that III ≥ 0 in view of (g4) and t1 > t2. Taking into account the definition of g,
we have

I ≥
∫

(R3\Λε)∩{t2u>a}

[
V0

K

1

(t1u)2
− V0

K

1

(t2u)2

]
u4dx

=
1

K

(
1

t21
− 1

t22

)∫
(R3\Λε)∩{t2u>a}

V0u
2dx.

Concerning II, from the definition of g and (g2), we can infer

II ≥
∫

(R3\Λε)∩{t2u≤a<t1u}

[
V0

K

1

(t1u)2
− f(t2u) + (t2u)2∗s−1

(t2u)3

]
u4dx.

Therefore we get

‖u‖2ε
(

1

t21
− 1

t22

)
≥ 1

K

(
1

t21
− 1

t22

)∫
(R3\Λε)∩{t2u>a}

V0u
2dx

+

∫
(R3\Λε)∩{t2u≤a<t1u}

[
V0

K

1

(t1u)2
− f(t2u) + (t2u)2∗s−1

(t2u)3

]
u4dx.
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Multiplying both sides by
t21t

2
2

t22−t21
< 0 and recalling that f(a)

a + a2∗s−2 = V0
K , we obtain

‖u‖2ε ≤
1

K

∫
(R3\Λε)∩{t2u>a}

V0u
2dx+

t21t
2
2

t22 − t21

∫
(R3\Λε)∩{t2u≤a<t1u}

[
V0

K

1

(t1u)2
− f(t2u) + (t2u)2∗s−1

(t2u)3

]
u4dx

≤ 1

K

∫
(R3\Λε)∩{t2u>a}

V0u
2dx

− t22
t21 − t22

∫
(R3\Λε)∩{t2u≤a<t1u}

V0

K
u2dx+

t21
t21 − t22

∫
(R3\Λε)∩{t2u≤a<t1u}

f(t2u) + (t2u)2∗s−1

t2u
u2dx

≤ 1

K

∫
R3\Λε

V0u
2dx ≤ 1

K
‖u‖2ε.

Then we can use the facts u 6= 0 and K > 2 to get a contradiction.
(ii) Let u ∈ S+

ε . By (i) there exists tu > 0 such that h′u(tu) = 0, or equivalently

tu + t3u

∫
R3

φtuu
2dx =

∫
R3

g(ε x, tuu)u dx. (3.6)

In the light of (g1) and (g2), given ξ > 0 there exists a positive constant Cξ such that

|g(x, t)| ≤ ξ|t|3 + Cξ|t|2
∗
s−1, for every t ∈ R.

From (3.6) and applying Theorem 2.1 we can see that

tu ≤ ξt3uC1 + Cξt
2∗s−1
u C2,

which implies that there exists τ > 0, independent of u, such that tu ≥ τ . Now, let K ⊂ S+
ε be

a compact set and we show that tu can be estimated from above by a constant depending on K.
Assume by contradiction that there exists a sequence {un}n∈N ⊂ K such that tn := tun → ∞.
Therefore, there exists u ∈ K such that un → u in Hε. In view of (3.3), we get

Jε(tnun)→ −∞. (3.7)

Fix v ∈ Nε. Then, using the fact that 〈J ′ε(v), v〉 = 0, and assumptions (g3)-(i) and (g3)-(ii), we
can infer

Jε(v) = Jε(v)− 1

ϑ
〈J ′ε(v), v〉

=

(
ϑ− 2

2ϑ

)
‖v‖2ε +

(
ϑ− 4

4ϑ

)∫
R3

φtvv
2dx+

1

ϑ

∫
R3\Λε

[g(ε x, v)v − ϑG(ε x, v)] dx

+
1

ϑ

∫
Λε

[g(ε x, v)v − ϑG(ε x, v)] dx

≥
(
ϑ− 2

2ϑ

)
‖v‖2ε +

1

ϑ

∫
R3\Λε

[g(ε x, v)v − ϑG(ε x, v)] dx

≥
(
ϑ− 2

2ϑ

)
‖v‖2ε −

(
ϑ− 2

2ϑ

)
1

K

∫
R3\Λε

V (ε x)v2dx

≥
(
ϑ− 2

2ϑ

)(
1− 1

K

)
‖v‖2ε (3.8)

Taking into account that {tunun}n∈N ⊂ Nε and K > 2, from (3.8) we deduce that (3.7) does not
hold, that is an absurd.
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(iii) First of all, we observe that m̂ε, mε and m−1
ε are well defined. In fact, by (i), for each u ∈ H+

ε

there exists a unique m̂ε(u) ∈ Nε. On the other hand, if u ∈ Nε then u ∈ H+
ε . Otherwise, if

u /∈ H+
ε , we have

| supp(u+) ∩ Λε| = 0,

which together with (g3)-(ii) gives

‖u‖2ε +

∫
R3

φtuu
2dx =

∫
R3\Λε

g(ε x, u+)u+ dx

≤ 1

K

∫
R3\Λε

V (ε x)u2dx ≤ 1

K
‖u‖2ε. (3.9)

Using φtu ≥ 0 and (3.9) we get

0 < ‖u‖2ε ≤
1

K
‖u‖2ε

and this leads to a contradiction because K > 2. Accordingly, m−1
ε (u) = u

‖u‖ε ∈ S+
ε , m−1

ε is well

defined and it is a continuous function. Now, take u ∈ S+
ε and we have

m−1
ε (mε(u)) = m−1

ε (tuu) =
tuu

‖tuu‖ε
=

u

‖u‖ε
= u

from which we deduce that mε is a bijection. Next, we show that m̂ε is a continuous function.
Let {un}n∈N ⊂ H+

ε and u ∈ H+
ε be such that un → u in Hε. Since m̂(tu) = m̂(u) for all t > 0,

we may assume that ‖un‖ε = ‖u‖ε = 1 for all n ∈ N. Then, in view of (ii), we can find t0 > 0
such that tn := tun → t0. Since tnun ∈ Nε, we obtain

t2n‖un‖2ε + t4n

∫
R3

φtunu
2
ndx =

∫
R3

g(ε x, tnun) tnun dx,

and taking the limit as n→∞ we get

t20‖u‖2ε + t40

∫
R3

φtuu
2dx =

∫
R3

g(ε x, t0u) t0u dx

which yields t0u ∈ Nε and tu = t0. Therefore,

m̂ε(un)→ m̂ε(u) in Hε,

and m̂ε and mε are continuous functions.
(iv) Let {un}n∈N ⊂ S+

ε be such that dist(un, ∂S+
ε ) → 0. Observing that for each p ∈ [2, 2∗s] and

n ∈ N it holds

|u+
n |Lp(Λε) ≤ inf

v∈∂S+ε
|un − v|Lp(Λε)

≤ Cp inf
v∈∂S+ε

‖un − v‖ε,
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by (g1), (g2), and (g3)-(ii), we can infer that for all t > 0∫
R3

G(ε x, tun) dx =

∫
R3\Λε

G(ε x, tun) dx+

∫
Λε

G(ε x, tun) dx

≤ t2

K

∫
R3\Λε

V (ε x)u2
ndx+

∫
Λε

F (tun) +
t2
∗
s

2∗s
(u+
n )2∗s dx

≤ t2

K
‖un‖2ε + C1t

4

∫
Λε

(u+
n )4dx+ C2t

2∗s

∫
Λε

(u+
n )2∗sdx

≤ t2

K
+ C ′1t

4dist(un, ∂S+
ε )4 + C ′2t

2∗sdist(un, ∂S+
ε )2∗s

from which, for all t > 0

lim sup
n→∞

∫
R3

G(ε x, tun) dx ≤ t2

K
. (3.10)

Recalling the definition of mε(un) and using (3.10) we get

lim inf
n→∞

Jε(tun) ≥ lim inf
n→∞

Jε(mε(un))

≥ lim inf
n→∞

[
t2

2
‖un‖2ε +

t4

4

∫
R3

φtunu
2
ndx−

∫
R3

G(ε x, tun) dx

]
≥
(

1

2
− 1

K

)
t2.

From the arbitrariness of t > 0 and being K > 2, we obtain

lim
n→∞

Jε(mε(un)) =∞.

Moreover, ‖mε(un)‖ε →∞ as n→∞ and this ends the proof of Lemma 3.2. �

Let us introduce the maps

ψ̂ε : H+
ε → R and ψε : S+

ε → R,

by ψ̂ε(u) := Jε(m̂ε(u)) and ψε := ψ̂ε|S+ε .

In view of Lemma 3.2 and Corollary 2.3 in [38], we obtain the following result.

Proposition 3.1. Assume that hypotheses (V1)-(V2) and (f1)-(f4) hold true. Then,

(a) ψ̂ε ∈ C1(H+
ε ,R) and

〈ψ̂′ε(u), v〉 =
‖m̂ε(u)‖ε
‖u‖ε

〈J ′ε(m̂ε(u)), v〉

for every u ∈ H+
ε and v ∈ Hε;

(b) ψε ∈ C1(S+
ε ,R) and

〈ψ′ε(u), v〉 = ‖mε(u)‖ε〈J ′ε(mε(u)), v〉,
for every

v ∈ TuS+
ε := {v ∈ Hε : (u, v)ε = 0} ;

(c) If {un}n∈N is a (PS)d sequence for ψε, then {mε(un)}n∈N is a (PS)d sequence for Jε. If
{un}n∈N ⊂ Nε is a bounded (PS)d sequence for Jε, then {m−1

ε (un)}n∈N is a (PS)d sequence
for the functional ψε;

(d) u is a critical point of ψε if, and only if, mε(u) is a nontrivial critical point for Jε. Moreover,
the corresponding critical values coincide and

inf
u∈S+ε

ψε(u) = inf
u∈Nε

Jε(u).
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Remark 3.1. As in [38], we can see that the following equalities hold

cε := inf
u∈Nε

Jε(u) = inf
u∈H+

ε

max
t>0
Jε(tu) = inf

u∈S+ε
max
t>0
Jε(tu).

Remark 3.2. Let us note that if u ∈ Nε, using (g1), (g2) and taking ξ ∈ (0, 1
2) we can see that

0 = ‖u‖2ε +

∫
R3

φuu
2dx−

∫
R3

g(ε x, u)udx

≥ 1

2
‖u‖2ε − C‖u‖2

∗
s
ε

which implies that ‖u‖ε ≥ α > 0 for some α independent of u.

4. Existence result for the modified problem

In this section we focus our attention on the existence of positive solutions to (3.2) for small
ε > 0. We begin showing that the functional Jε satisfies the Palais-Smale condition at any level

d < s
3S

3
2s
∗ ((PS)d in short), where S∗ is the best constant of the Sobolev embedding Hs(R3) into

L2∗s (R3). We recall that the existence of Palais-Smale sequences of Jε is justified by Lemma 3.1
and Mountain-Pass Lemma [41]. Firstly, we note that any Palais-Smale sequence is bounded.

Lemma 4.1. Let {un}n∈N be a (PS)d sequence for Jε. Then {un}n∈N is bounded in Hε.

Proof. Let {un}n∈N be a (PS) sequence at the level d, that is

Jε(un)→ d and J ′ε(un)→ 0 in H−1
ε .

Arguing as in the proof of Lemma 3.2-(ii) (see formula (3.8) there), we can deduce that

C + ‖un‖ε ≥ Jε(un)− 1

ϑ
〈J ′ε(un), un〉

≥
(
ϑ− 2

2ϑ

)(
1− 1

K

)
‖un‖2ε.

Since ϑ > 4 and K > 2, we can conclude that {un}n∈N is bounded in Hε. �

The next result will be fundamental to obtain compactness of bounded Palais-Smale sequences.

Lemma 4.2. Let {un}n∈N be a (PS)d sequence for Jε. Then, for each ζ > 0, there exists
R = R(ζ) > 0 such that

lim sup
n→∞

[∫
R3\BR

dx

∫
R3

|un(x)− un(y)|2

|x− y|3+2s
dy +

∫
R3\BR

V (ε x)u2
n dx

]
< ζ.

Proof. For any R > 0, let ηR ∈ C∞(R3) be such that ηR = 0 in BR and ηR = 1 in Bc
2R, with

0 ≤ ηR ≤ 1 and |∇ηR| ≤ C
R , where C is a constant independent of R. Since {ηRun}n∈N is bounded

in Hε, it follows that 〈J ′ε(un), ηRun〉 = on(1), that is[∫∫
R6

|un(x)− un(y)|2

|x− y|3+2s
ηR(x) dxdy +

∫
R3

V (ε x)u2
nηR dx

]
+

∫
R3

φtunu
2
nηRdx

= on(1) +

∫
R3

g(ε x, un)unηR dx−
∫∫

R6

(ηR(x)− ηR(y))(un(x)− un(y))

|x− y|3+2s
un(y) dxdy.



12 V. AMBROSIO

Take R > 0 such that Λε ⊂ BR. Then, using (g3)-(ii) we get[∫∫
R6

|un(x)− un(y)|2

|x− y|3+2s
ηR(x) dxdy +

∫
R3

V (ε x)u2
nηR dx

]
≤
∫
R3

1

K
V (ε x)u2

nηR dx−
∫∫

R6

(ηR(x)− ηR(y))(un(x)− un(y))

|x− y|3+2s
un(y) dxdy + on(1)

which implies that(
1− 1

K

)[∫∫
R6

|un(x)− un(y)|2

|x− y|3+2s
ηR(x) dxdy +

∫
R3

V (ε x)u2
nηR dx

]
≤ −

∫∫
R6

(ηR(x)− ηR(y))(un(x)− un(y))

|x− y|3+2s
un(y) dxdy + on(1). (4.1)

Now, we aim to show that

lim
R→∞

lim sup
n→∞

∫∫
R6

(ηR(x)− ηR(y))(un(x)− un(y))

|x− y|3+2s
un(y) dxdy = 0. (4.2)

Applying Hölder inequality and the boundedness of {un}n∈N we can see that∣∣∣∣∫∫
R6

(ηR(x)− ηR(y))(un(x)− un(y))

|x− y|3+2s
un(y) dxdy

∣∣∣∣
≤
(∫∫

R6

|un(x)− un(y)|2

|x− y|3+2s
dxdy

) 1
2
(∫∫

R6

|ηR(x)− ηR(y)|2

|x− y|3+2s
|un(y)|2 dxdy

) 1
2

≤ C
(∫∫

R6

|ηR(x)− ηR(y)|2

|x− y|3+2s
|un(y)|2 dxdy

) 1
2

so it is enough to prove

lim
R→∞

lim sup
n→∞

∫∫
R6

|ηR(x)− ηR(y)|2

|x− y|3+2s
|un(y)|2 dxdy = 0

to infer that (4.2) holds true.
Firstly, we note that R6 can be written as

R6 = ((R3 \B2R)× (R3 \B2R)) ∪ ((R3 \B2R)×B2R) ∪ (B2R × R3) =: X1
R ∪ X2

R ∪ X3
R.

Then∫∫
R6

|ηR(x)− ηR(y)|2

|x− y|3+2s
|un(x)|2dxdy =

∫∫
X1
R

|ηR(x)− ηR(y)|2

|x− y|3+2s
|un(x)|2dxdy

+

∫∫
X2
R

|ηR(x)− ηR(y)|2

|x− y|3+2s
|un(x)|2dxdy +

∫∫
X3
R

|ηR(x)− ηR(y)|2

|x− y|3+2s
|un(x)|2dxdy. (4.3)

In what follows, we estimate each integrals in (4.3). Since ηR = 1 in R3 \B2R, we have∫∫
X1
R

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dxdy = 0. (4.4)

Let k > 4. Clearly, we have

X2
R = (R3 \B2R)×B2R ⊂ ((R3 \BkR)×B2R) ∪ ((BkR \B2R)×B2R).
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Let us observe that, if (x, y) ∈ (R3 \BkR)×B2R, then

|x− y| ≥ |x| − |y| ≥ |x| − 2R >
|x|
2
.

Then, taking into account that 0 ≤ ηR ≤ 1, |∇ηR| ≤ C
R and applying Hölder inequality, we can

see∫∫
X2
R

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dxdy

=

∫
R3\BkR

dx

∫
B2R

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dy +

∫
BkR\B2R

dx

∫
B2R

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dy

≤ 25+2s

∫
R3\BkR

dx

∫
B2R

|un(x)|2

|x|3+2s
dy +

C

R2

∫
BkR\B2R

dx

∫
B2R

|un(x)|2

|x− y|3+2(s−1)
dy

≤ CR3

∫
R3\BkR

|un(x)|2

|x|3+2s
dx+

C

R2
(kR)2(1−s)

∫
BkR\B2R

|un(x)|2dx

≤ CR3

(∫
R3\BkR

|un(x)|2∗sdx

) 2
2∗s
(∫

R3\BkR

1

|x|
9
2s

+3
dx

) 2s
3

+
Ck2(1−s)

R2s

∫
BkR\B2R

|un(x)|2dx

≤ C

k3

(∫
R3\BkR

|un(x)|2∗sdx

) 2
2∗s

+
Ck2(1−s)

R2s

∫
BkR\B2R

|un(x)|2dx

≤ C

k3
+
Ck2(1−s)

R2s

∫
BkR\B2R

|un(x)|2dx. (4.5)

Now, we fix δ ∈ (0, 1), and we note that∫∫
X3
R

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dxdy

≤
∫
B2R\BδR

dx

∫
R3

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dy +

∫
BδR

dx

∫
R3

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dy. (4.6)

Let us estimate the first integral in (4.6). Thus,∫
B2R\BδR

dx

∫
R3∩{y:|x−y|<R}

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dy ≤ C

R2s

∫
B2R\BδR

|un(x)|2dx

and ∫
B2R\BδR

dx

∫
R3∩{y:|x−y|≥R}

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dy ≤ C

R2s

∫
B2R\BδR

|un(x)|2dx

from which we obtain∫
B2R\BδR

dx

∫
R3

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dy ≤ C

R2s

∫
B2R\BδR

|un(x)|2dx. (4.7)
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Now, using the definition of ηR, δ ∈ (0, 1), and 0 ≤ ηR ≤ 1, we have∫
BδR

dx

∫
R3

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dy =

∫
BδR

dx

∫
R3\BR

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dy

≤ 4

∫
BδR

dx

∫
R3\BR

|un(x)|2

|x− y|3+2s
dy

≤ C
∫
BδR

|un|2dx
∫ ∞

(1−δ)R

1

r1+2s
dr

=
C

[(1− δ)R]2s

∫
BδR

|un|2dx (4.8)

where we used the fact that if (x, y) ∈ BδR × (R3 \BR), then |x− y| > (1− δ)R.
Taking into account (4.6), (4.7) and (4.8) we deduce∫∫

X3
R

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dxdy

≤ C

R2s

∫
B2R\BδR

|un(x)|2dx+
C

[(1− δ)R]2s

∫
BδR

|un(x)|2dx. (4.9)

Putting together (4.3), (4.4), (4.5) and (4.9), we can infer

∫∫
R6

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dxdy ≤ C

k3
+
Ck2(1−s)

R2s

∫
BkR\B2R

|un(x)|2dx

+
C

R2s

∫
B2R\BδR

|un(x)|2dx+
C

[(1− δ)R]2s

∫
BδR

|un(x)|2dx.

(4.10)

Since {un}n∈N is bounded in Hs(R3), by Theorem 2.1 we may assume that un → u in L2
loc(R3)

for some u ∈ Hs(R3). Taking the limit as n→∞ in (4.10) we have

lim sup
n→∞

∫∫
R6

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dxdy

≤ C

k3
+
Ck2(1−s)

R2s

∫
BkR\B2R

|u(x)|2dx+
C

R2s

∫
B2R\BδR

|u(x)|2dx+
C

[(1− δ)R]2s

∫
BδR

|u(x)|2dx

≤ C

k3
+ Ck2

(∫
BkR\B2R

|u(x)|2∗sdx

) 2
2∗s

+ C

(∫
B2R\BδR

|u(x)|2∗sdx

) 2
2∗s

+ C

(
δ

1− δ

)2s(∫
BδR

|u(x)|2∗sdx
) 2

2∗s
,

where in the last passage we used the Hölder inequality.
Since u ∈ L2∗s (R3), k > 4 and δ ∈ (0, 1), we obtain

lim sup
R→∞

∫
BkR\B2R

|u(x)|2∗sdx = lim sup
R→∞

∫
B2R\BδR

|u(x)|2∗sdx = 0.
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Choosing δ = 1
k , we get

lim sup
R→∞

lim sup
n→∞

∫∫
R6

|un(x)|2|ηR(x)− ηR(y)|2

|x− y|3+2s
dxdy

≤ lim
k→∞

lim sup
R→∞

[ C
k3

+ Ck2

(∫
BkR\B2R

|u(x)|2∗sdx

) 2
2∗s

+ C

∫
B2R\B 1

k
R

|u(x)|2∗sdx

 2
2∗s

+ C

(
1

k − 1

)2s
∫

B 1
k
R

|u(x)|2∗sdx

 2
2∗s ]

≤ lim
k→∞

C

k3
+ C

(
1

k − 1

)2s(∫
R3

|u(x)|2∗sdx
) 2

2∗s
= 0.

Putting together (4.1), (4.2) and using the definition of ηR, we deduce that

lim
R→∞

lim sup
n→∞

∫
R3\BR

dx

∫
R3

|un(x)− un(y)|2

|x− y|3+2s
dy +

∫
R3\BR

V (ε x)u2
n dx = 0.

This ends the proof of Lemma 4.2. �

Proposition 4.1. The functional Jε verifies the (PS)d condition in Hε at any level d < s
3S

3
2s
∗ .

Proof. Let {un}n∈N be a (PS) sequence for Jε at the level d. By Lemma 4.1 we know that
{un}n∈N is bounded in Hε, and, up to a subsequence, we may assume that

un ⇀ u in Hε. (4.11)

In view of Lemma 4.2, for each ζ > 0 there exists R = R(ζ) > 0 such that

lim sup
n→∞

[∫
R3\BR

dx

∫
R3

|un(x)− un(y)|2

|x− y|3+2s
dy +

∫
R3\BR

V (ε x)u2
n dx

]
< ζ. (4.12)

Using (4.12) and Hε b Lrloc(R3) for all r ∈ [2, 2∗s), it is easy to deduce that un → u in Lr(R3) for
all r ∈ [2, 2∗s). In particular

un → u in L
12

3+2t (R3). (4.13)

Then, in view of (4.11) and (4.13), we can apply (1) and (6) of Lemma 2.3 to infer that

φtun → φtu in Dt,2(R3) (4.14)

and ∫
R3

φtunu
2
ndx→

∫
R3

φtuu
2dx. (4.15)

Putting together (4.11), (4.13) and (4.14) it is easy to check that as n→∞∫
R3

φtununψ dx =

∫
R3

φtuuψ dx+ on(1)

for all ψ ∈ C∞c (R3). Since it is clear that (4.11) and (f1)-(f2) yield

(un, ψ)ε → (u, ψ)ε and

∫
R3

g(ε x, un)ψ dx→
∫
R3

g(ε x, u)ψ dx,
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for all ψ ∈ C∞c (R3), we can infer that u is a critical point of Jε. In particular

‖u‖2ε +

∫
R3

φtuu
2dx =

∫
R3

g(ε x, u)u dx. (4.16)

In what follows, we show that∫
R3

g(ε x, un)un dx→
∫
R3

g(ε x, u)u dx. (4.17)

Using (4.12), (f1), (f2), (g2) and Theorem 2.1 we can see that∫
R3\BR

g(ε x, un)un dx ≤ C(ζ + ζ
σ
2 + ζ

2∗s
2 ), (4.18)

for any n big enough. On the other hand, choosing R large enough, we may assume that∫
R3\BR

g(ε x, u)u dx ≤ ζ. (4.19)

From the arbitrariness of ζ > 0, we can see that (4.18) and (4.19) yield∫
R3\BR

g(ε x, un)un dx→
∫
R3\BR

g(ε x, u)u dx (4.20)

as n→∞. Now, we note that by the definition of g we know that

g(ε x, un)un ≤ f(un)un + a2∗s +
V0

K
u2
n in R3 \ Λε.

Since BR ∩ (R3 \Λε) is bounded, we can use (f1)-(f2), the Dominated Convergence Theorem and
the strong convergence in Lrloc(R3) for all r ∈ [1, 2∗s), to see that∫

BR∩(R3\Λε)
g(ε x, un)un dx→

∫
BR∩(R3\Λε)

g(ε x, u)u dx (4.21)

as n→∞.
At this point, we aim to show that

lim
n→∞

∫
Λε

|un|2
∗
s dx =

∫
Λε

|u|2∗s dx. (4.22)

Indeed, if we assume that (4.22) is true, from Theorem 2.1, (g2), (f1)-(f2), (4.11) and the Domi-
nated Convergence Theorem, we can see that∫

BR∩Λε

g(ε x, un)un dx→
∫
BR∩Λε

g(ε x, u)u dx. (4.23)

Putting together (4.20), (4.21) and (4.23), we can conclude that (4.17) holds. Hence, in view of
〈J ′ε(un), un〉 = on(1), we can see that (4.15), (4.16) and (4.17) imply that ‖un‖ε → ‖u‖ε, and
then un → u in Hε (since Hε is a Hilbert space).

It remains to prove that (4.22) is satisfied. Invoking the Concentration-Compactness Lemma
for the fractional Laplacian [17, 31], we can find an at most countable index set I, sequences
{xi}i∈I ⊂ R3, {µi}i∈I , {νi}i∈I ⊂ (0,∞) such that

µ ≥ |(−∆)
s
2u|2 +

∑
i∈I

µiδxi ,

ν = |u|2∗s +
∑
i∈I

νiδxi and S∗ν
2
2∗s
i ≤ µi

(4.24)



FRACTIONAL SCHRÖDINGER-POISSON SYSTEMS 17

for any i ∈ I, where δxi is the Dirac mass at the point xi. Let us show that {xi}i∈I ∩ Λε = ∅.
Assume by contradiction that xi ∈ Λε for some i ∈ I. For any ρ > 0, we define ψρ(x) = ψ(x−xiρ )

where ψ ∈ C∞0 (R3, [0, 1]) is such that ψ = 1 in B1, ψ = 0 in R3 \B2 and |∇ψ|∞ ≤ 2. We suppose
that ρ > 0 is such that supp(ψρ) ⊂ Λε. Since {ψρun}n∈N is bounded, we have 〈J ′ε(un), ψρun〉 =
on(1), from which∫∫

R6

ψρ(y)
|un(x)− un(y)|2

|x− y|3+2s
dxdy

≤
∫∫

R6

ψρ(y)
|un(x)− un(y)|2

|x− y|3+2s
dxdy +

∫
R3

φtunu
2
nψρdx+

∫
R3

V (ε x)u2
nψρdx

≤ −
∫∫

R6

un(x)
(un(x)− un(y)(ψρ(x)− ψρ(y)))

|x− y|3+2s
dxdy

+

∫
R3

unψρf(un) dx+

∫
R3

ψρ|un|2
∗
s dx+ on(1). (4.25)

Due to the fact that f has subcritical growth and ψρ has compact support, we obtain that

lim
ρ→0

lim
n→∞

∫
R3

f(un)unψρ dx = lim
ρ→0

∫
R3

ψρf(u)u dx = 0. (4.26)

Now, we show that

lim
ρ→0

lim
n→∞

∫∫
R6

un(x)
(un(x)− un(y)(ψρ(x)− ψρ(y)))

|x− y|3+2s
dxdy = 0. (4.27)

Using Hölder inequality and the fact that {un} is bounded in Hε, we can see that∣∣∣∣∫∫
R6

un(x)
(un(x)− un(y)(ψρ(x)− ψρ(y)))

|x− y|3+2s
dxdy

∣∣∣∣
≤
(∫∫

R6

|un(x)− un(y)|2

|x− y|3+2s
dxdy

) 1
2
(∫∫

R6

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dxdy

) 1
2

≤ C
(∫∫

R6

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dxdy

) 1
2

.

Therefore, if we prove that

lim
ρ→0

lim
n→∞

∫∫
R6

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dxdy = 0, (4.28)

then (4.27) is satisfied. In what follows, we modify suitably the arguments in Lemma 4.2.
Let us note that R6 can be written as

R6 = ((R3\B2ρ(xi))×(R3\B2ρ(xi)))∪(B2ρ(xi)×R3)∪((R3\B2ρ(xi))×B2ρ(xi)) =: X1
ρ∪X2

ρ∪X3
ρ .

Hence ∫∫
R6

|un(x)|2 (ψρ(x)− ψρ(y))2

|x− y|3+2s
dxdy

=

∫∫
X1
ρ

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dxdy +

∫∫
X2
ρ

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dxdy

+

∫∫
X3
ρ

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dxdy. (4.29)
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Since ψ = 0 in R3 \B2, we have∫∫
X1
ρ

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dxdy = 0. (4.30)

Using 0 ≤ ψ ≤ 1 and the Mean Value Theorem, we can see that∫∫
X2
ρ

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dxdy

=

∫
B2ρ(xi)

dx

∫
{y∈R3:|x−y|≤ρ}

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dy +

∫
B2ρ(xi)

dx

∫
{y∈R3:|x−y|>ρ}

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dy

≤ ρ−2|∇ψ|2∞
∫
B2ρ(xi)

dx

∫
{y∈R3:|x−y|≤ρ}

|un(x)|2

|x− y|3+2s−2
dy + 4

∫
B2ρ(xi)

dx

∫
{y∈R3:|x−y|>ρ}

|un(x)|2

|x− y|3+2s
dy

≤ Cρ−2s

∫
B2ρ(xi)

|un(x)|2 dx+ Cρ−2s

∫
B2ρ(xi)

|un(x)|2 dx ≤ Cρ−2s

∫
B2ρ(xi)

|un(x)|2 dx, (4.31)

for some C > 0 independent of ρ and n. On the other hand∫∫
X3
ρ

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dxdy

=

∫
R3\B2ρ(xi)

dx

∫
{y∈B2ρ(xi):|x−y|≤ρ}

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dy

+

∫
R3\B2ρ(xi)

dx

∫
{y∈B2ρ(xi):|x−y|>ρ}

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dy =: Aρ,n +Bρ,n. (4.32)

Now, we note that |x− y| < ρ and |y − xi| < 2ρ imply |x− xi| < 3ρ, so we get

Aρ,n ≤ ρ−2|∇ψ|2∞
∫
B3ρ(xi)

dx

∫
{y∈B2ρ(xi):|x−y|≤ρ}

|un(x)|2

|x− y|1+2s
dy

≤ Cρ−2

∫
B3ρ(xi)

|un(x)|2 dx
∫ ρ

0

1

r2s−1
dr

≤ Cρ−2s

∫
B3ρ(xi)

|un(x)|2 dx, (4.33)

for some C > 0 independent of ρ and n. Let us observe, that for all k > 4 it holds

(R3 \B2ρ(xi))×B2ρ(xi) ⊂ (Bkρ(xi)×B2ρ(xi)) ∪ ((R3 \Bkρ(xi))×B2ρ(xi)).

Then, we have the following estimates∫
Bkρ(xi)

dx

∫
{y∈B2ρ(xi):|x−y|>ρ}

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dy

≤ 4

∫
Bkρ(xi)

dx

∫
{y∈B2ρ(xi):|x−y|>ρ}

|un(x)|2 1

|x− y|3+2s
dy

≤ 4

∫
Bkρ(xi)

|un(x)|2 dx
∫
{z∈R3:|z|>ρ}

1

|z|3+2s
dz

≤ Cρ−2s

∫
Bkρ(xi)

|un(x)|2 dx, (4.34)
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for some C > 0 independent of ρ and n. On the other hand, |x−xi| ≥ kρ and |y−xi| < 2ρ imply

|x− y| ≥ |x− xi| − |y − xi| ≥
|x− xi|

2
+
kρ

2
− 2ρ >

|x− xi|
2

,

which together with 0 ≤ ψ ≤ 1 gives∫
R3\Bkρ(xi)

dx

∫
{y∈B2ρ(xi):|x−y|>ρ}

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dy

≤ C
∫
R3\Bkρ(xi)

dx

∫
{y∈B2ρ(xi):|x−y|>ρ}

|un(x)|2

|x− xi|3+2s
dy

≤ Cρ3

∫
R3\Bkρ(xi)

|un(x)|2

|x− xi|3+2s
dx

≤ Cρ3

(∫
R3\Bkρ(xi)

|un(x)|2∗s dx

) 2
2∗s
(∫

R3\Bkρ(xi)
|x− xi|

−(3+2s)
2∗s

2∗s−2 dx

) 2∗s−2

2∗s

≤ Ck−3

(∫
R3\Bkρ(xi)

|un(x)|2∗s dx

) 2
2∗s

, (4.35)

for some C > 0 independent of ρ and n. Taking into account (4.34) and (4.35), and the fact that
{un}n∈N is bounded in L2∗s (R3), we can find C > 0 independent of ρ and n such that

Bρ,n ≤ Cρ−2s

∫
Bkρ(xi)

|un(x)|2 dx+ Ck−3. (4.36)

Putting together (4.29)-(4.33) and (4.36), we have∫∫
R6

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dxdy ≤ Cρ−2s

∫
Bkρ(xi)

|un(x)|2 dx+ Ck−3, (4.37)

for some C > 0 independent of ρ and n. Since un → u strongly in L2
loc(R3), we can deduce that

lim
n→∞

Cρ−2s

∫
Bkρ(xi)

|un(x)|2 dx+ Ck−3 = Cρ−2s

∫
Bkρ(xi)

u2(x) dx+ Ck−3.

Moreover, using the Hölder inequality, we get

Cρ−2s

∫
Bkρ(xi)

|u(x)|2 dx+ Ck−3 ≤ Cρ−2s

(∫
Bkρ(xi)

|u(x)|2∗s dx

) 2
2∗s

|Bkρ(xi)|
1− 2

2∗s + Ck−3

≤ Ck2s

(∫
Bkρ(xi)

|u(x)|2∗s dx

) 2
2∗s

+ Ck−3 → Ck−3 as ρ→ 0.

Accordingly,

lim
ρ→0

lim sup
n→∞

∫∫
R6

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dxdy

= lim
k→∞

lim
ρ→0

lim sup
n→∞

∫∫
R6

|un(x)|2 |ψρ(x)− ψρ(y)|2

|x− y|3+2s
dxdy = 0,

that is (4.28) holds true.
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Now, by (4.24) and taking the limit as ρ→ 0 and n→∞ in (4.25), we can deduce that νi ≥ µi.
In view of the last statement in (4.24), we have νi ≥ S

3
2s , and using (g3), (V1) and K > 2 we can

deduce that

d = Jε(un)− 1

4
〈J ′ε(un), un〉+ on(1)

≥ 1

4
‖un‖2ε +

∫
R3\Λε

[
1

4
ung(ε x, un)−G(ε x, un)

]
dx+

4s− 3

12

∫
Λε

|un|2
∗
s dx+ on(1)

≥ 1

4

[∫
Λε

ψρ|(−∆)
s
2un|2dx+

∫
R3\Λε

V (ε x)u2
ndx

]
− 1

4K

∫
R3\Λε

V0u
2
ndx+

4s− 3

12

∫
Λε

|un|2
∗
s dx+ on(1)

≥ 1

4

∫
Λε

ψρ|(−∆)
s
2un|2dx+

(
1

4
− 1

4K

)∫
R3\Λε

V (ε x)u2
ndx+

4s− 3

12

∫
Λε

|un|2
∗
s dx+ on(1)

≥ 1

4

∫
Λε

ψρ|(−∆)
s
2un|2dx+

4s− 3

12

∫
Λε

ψρ|un|2
∗
s dx+ on(1).

Then, in view of (4.24), νi ≥ S
3
2s and taking the limit as n→∞, we find

d ≥ 1

4

∑
{i∈I:xi∈Λε}

ψρ(xi)µi +
4s− 3

12

∑
{i∈I:xi∈Λε}

ψρ(xi)νi

≥ 1

4

∑
{i∈I:xi∈Λε}

ψρ(xi)S∗ν
2/2∗s
i +

4s− 3

12

∑
{i∈I:xi∈Λε}

ψρ(xi)νi

≥ 1

4
S

3
2s
∗ +

4s− 3

12
S

3
2s
∗ =

s

3
S

3
2s
∗ ,

which gives a contradiction. This means that (4.22) holds and we can conclude the proof. �

Corollary 4.1. The functional ψε verifies the (PS)d condition on S+
ε for any d < s

3S
3
2s
∗ .

Proof. Let {un}n∈N ⊂ S+
ε be a (PS) sequence for ψε at the level d, that is

ψε(un)→ d and ψ′ε(un)→ 0 in (TunS+
ε )′.

Using Proposition 3.1-(c) we can see that {mε(un)}n∈N is a (PS)d sequence for Jε in Hε. Then,
from Proposition 4.1 we can see that Jε verifies the (PS)d condition in Hε, so there exists u ∈ S+

ε

such that, up to a subsequence,

mε(un)→ mε(u) in Hε.
By Lemma 3.2-(iii), we can infer that un → u in S+

ε . �

Now, we conclude this section giving the proof of the main result of this section:

Theorem 4.1. Assume that (V1)-(V2) and (f1)-(f4) hold. Then, problem (3.2) admits a positive
ground state for all ε > 0.

Proof. Arguing as in the proof of Lemma 3.1 in [27], we can prove that cε <
s
3S

3
2s
∗ for all ε > 0.

Then, taking into account Lemma 3.1, Lemma 4.1, Proposition 4.1, and applying mountain pass
theorem [4], we can see that Jε admits a nontrivial critical point u ∈ Hε. Since 〈J ′ε(u), u−〉 = 0,
where u− = min{u, 0}, it is easy to check that u ≥ 0 in R3. Moreover, proceeding as in the proof
of Lemma 7.1 below, we can see that u ∈ L∞(R3). From Proposition 2.9 in [37], we deduce that
u ∈ C1,α(R3) and by the maximum principle [37] we can conclude that u > 0 in R3. Finally, we
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show that u is a ground state solution. Indeed, in view of (g3) and applying Fatou’s Lemma we
obtain

cε ≤ Jε(u)− 1

ϑ
〈J ′ε(u), u〉

=

(
1

2
− 1

ϑ

)
‖u‖2ε +

(
1

4
− 1

ϑ

)∫
R3

φtuu
2dx+

∫
R3

1

ϑ
g(ε x, u)u−G(ε x, u)dx

≤ lim inf
n→∞

[(
1

2
− 1

ϑ

)
‖un‖2ε +

(
1

4
− 1

ϑ

)∫
R3

φtuu
2
ndx+

∫
R3

1

ϑ
g(ε x, un)un −G(ε x, un)dx

]
= lim inf

n→∞

[
Jε(un)− 1

ϑ
〈J ′ε(un), un〉

]
= cε

which implies that Jε(u) = cε. �

5. The autonomous problem

In this section we consider the limit problem associated to (3.2). More precisely, we deal with
the following autonomous problem{

(−∆)su+ V0u+ φtuu = f(u) + |u|2∗s−2u in R3,
u ∈ Hs(R3), u > 0 in R3.

(5.1)

The Euler-Lagrange functional associated to (5.1) is given by

J0(u) =
1

2

(∫∫
R6

|u(x)− u(y)|2

|x− y|3+2s
dxdy +

∫
R3

V0u
2dx

)
+

1

4

∫
R3

φtuu
2dx−

∫
R3

F (u)dx− 1

2∗s

∫
R3

(u+)2∗sdx

which is well defined on the Hilbert space H0 := Hs(R3) endowed with the inner product

(u, ϕ)0 =

∫∫
R6

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|3+2s
dxdy +

∫
R3

V0u(x)ϕ(x)dx.

The norm induced by this inner product is

‖u‖20 =

∫∫
R6

|u(x)− u(y)|2

|x− y|3+2s
dxdy +

∫
R3

V0u
2dx.

The Nehari manifold associated to J0 is given by

N0 = {u ∈ H0 \ {0} : 〈J ′0(u), u〉 = 0}.
We denote by H+

0 the open subset of H0 defined as

H+
0 = {u ∈ H0 : | supp(u+)| > 0},

and S+
0 = S0 ∩ H+

0 , where S0 is the unit sphere of H0. We note that S+
0 is a incomplete C1,1-

manifold of codimension 1 modeled on H0 and contained in H+
0 . Thus H0 = TuS+

0 ⊕Ru for each
u ∈ S+

0 , where TuS+
0 = {u ∈ H0 : (u, v)0 = 0}.

As in Section 3, we can see that the following results hold.

Lemma 5.1. Assume that (f1)-(f4) hold true. Then,
(i) For each u ∈ H+

0 , let hu : R+ → R be defined by hu(t) = J0(tu). Then, there is a unique
tu > 0 such that

h′u(t) > 0 in (0, tu)

h′u(t) < 0 in (tu,∞);
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(ii) there exists τ > 0 independent of u such that tu ≥ τ for any u ∈ S+
0 . Moreover, for each

compact set K ⊂ S+
0 there is a positive constant CK such that tu ≤ CK for any u ∈ K;

(iii) The map m̂0 : H+
0 → N0 given by m̂0(u) = tuu is continuous and m0 := m̂0|S+0 is a

homeomorphism between S+
0 and N0. Moreover m−1

0 (u) = u
‖u‖0 ;

(iv) If there is a sequence {un}n∈N ⊂ S+
0 such that dist(un, ∂S+

0 ) → 0, then ‖m0(un)‖0 → ∞
and J0(m0(un))→∞.

Let us define the maps
ψ̂0 : H+

0 → R and ψ0 : S+
0 → R,

by ψ̂0(u) := J0(m̂0(u)) and ψ0 := ψ̂0|S+0 .

Proposition 5.1. Assume that assumptions (f1)-(f4) hold true. Then,

(a) ψ̂0 ∈ C1(H+
0 ,R) and

〈ψ̂′0(u), v〉 =
‖m̂0(u)‖0
‖u‖0

〈J ′0(m̂0(u)), v〉

for every u ∈ H+
0 and v ∈ H0;

(b) ψ0 ∈ C1(S+
0 ,R) and

〈ψ′0(u), v〉 = ‖m0(u)‖0〈J ′0(m0(u)), v〉,
for every

v ∈ TuS+
0 := {v ∈ H0 : (u, v)0 = 0} ;

(c) If {un}n∈N is a (PS)d sequence for ψ0, then {m0(un)}n∈N is a (PS)d sequence for J0. If
{un}n∈N ⊂ N0 is a bounded (PS)d sequence for J0, then {m−1

0 (un)}n∈N is a (PS)d sequence
for the functional ψ0;

(d) u is a critical point of ψ0 if, and only if, m0(u) is a nontrivial critical point for J0. Moreover,
the corresponding critical values coincide and

inf
u∈S+0

ψ0(u) = inf
u∈N0

J0(u).

Remark 5.1. As in Section 3, we have the following equalities

c0 := inf
u∈N0

J0(u) = inf
u∈H+

0

max
t>0
J0(tu) = inf

u∈S+0
max
t>0
J0(tu).

We recall the following lemma whose proof can be found in [27] (see Lemma 3.3 there):

Lemma 5.2. Let {un}n∈N ⊂ H0 be a (PS)d sequence for J0 with d < s
3S

3
2s
∗ and un ⇀ 0. Then,

only one of the alternative below holds:
(a) un → 0 in H0;
(b) there exist a sequence {yn}n∈N ⊂ R3 and constants R, β > 0 such that

lim inf
n→∞

∫
BR(yn)

u2
ndx ≥ β > 0.

Remark 5.2. Let us observe that, if {un}n∈N is a (PS) sequence at the level c0 for the functional
J0 such that un ⇀ u, then we may assume u 6= 0. Otherwise, if un ⇀ 0 and, once it does not
occur un → 0 in H0, in view of Lemma 5.2 we can find {yn}n∈N ⊂ R3 and R, β > 0 such that

lim inf
n→∞

∫
BR(yn)

u2
ndx ≥ β > 0.

Set vn(x) = un(x + yn), and making a change of variable, we can see that {vn}n∈N is a (PS)c0
sequence for J0, {vn}n∈N is bounded in H0 and there exists v ∈ H0 such that vn ⇀ v with v 6= 0.
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Moreover, arguing as in the proof of Proposition 3.4 in [27], we have the following existence
result:

Theorem 5.1. Problem (5.1) admits a positive ground state solution.

Now we give a compactness result for the autonomous problem which we will use later.

Lemma 5.3. Let {un}n∈N ⊂ N0 be a sequence such that J0(un) → c0. Then {un}n∈N has a
convergent subsequence in Hs(R3).

Proof. Since {un}n∈N ⊂ N0 and J0(un)→ c0, we can apply Lemma 5.1-(iii), Proposition 5.1-(d)
and the definition of c0 to infer that

vn = m−1(un) =
un
‖un‖0

∈ S+
0

and

ψ0(vn) = J0(un)→ c0 = inf
v∈S+0

ψ0(v).

Let us introduce the following map F : S+
0 → R ∪ {∞} defined by setting

F(u) :=

{
ψ0(u) if u ∈ S+

0

∞ if u ∈ ∂S+
0 .

We note that

• (S+
0 , d0), where d(u, v) = ‖u− v‖0, is a complete metric space;

• F ∈ C(S+
0 ,R ∪ {∞}), by Lemma 5.1-(iv);

• F is bounded below, by Proposition 5.1-(d).

Hence, applying the Ekeland’s variational principle [18] to F , we can find {v̂n}n∈N ⊂ S+
0 such

that {v̂n}n∈N is a (PS)c0 sequence for ψ0 on S+
0 and ‖v̂n−vn‖0 = on(1). Then, using Proposition

5.1, Theorem 5.1 and arguing as in the proof of Corollary 4.1 we obtain the thesis. �

Finally, we prove the following useful relation between cε and c0:

Lemma 5.4. It holds limε→0 cε = c0.

Proof. For any R > 0 we set uR(x) = ψR(x)u0(x), where u0 is positive ground state of (5.1)
which is given by Theorem 5.1, and ψR(x) = ψ(x/R) with ψ ∈ C∞c (R3), ψ ∈ [0, 1], ψ = 1 if
|x| ≤ 1

2 and ψ = 0 if |x| ≥ 1. For simplicity, we assume that supp(ψ) ⊂ B1 ⊂ Λ. By Lemma 2.2
and the Dominated Convergence Theorem we can see that

uR → u0 in Hs(R3) as R→∞. (5.2)

For each ε,R > 0 there exists tε,R > 0 such that

Jε(tε,RuR) = max
t≥0
Jε(tuR).

Then J ′ε(tε,RuR) = 0 and this implies that

1

t2ε,R

∫
R3

|(−∆)
s
2uR|2 + V (ε x)u2

Rdx+

∫
BR

φtuRu
2
Rdx =

∫
BR

f(tε,RuR)

(tε,RuR)3
u4
Rdx+ t

2∗s−4
ε,R

∫
BR

|uR|2
∗
sdx.

(5.3)

From the last equality, we can deduce that for any R > 0 we have

0 < lim
ε→0

tε,R = tR <∞.
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Taking the limit as ε→ 0 in (5.3) we get

1

t2R

∫
R3

|(−∆)
s
2uR|2 + V0u

2
Rdx+

∫
BR

φtuRu
2
Rdx =

∫
BR

f(tRuR)

(tRuR)3
u4
Rdx+ t

2∗s−4
R

∫
BR

|uR|2
∗
sdx. (5.4)

Putting together (5.2) and (5.4) we deduce that tR = 1 and J0(tRuR) = maxt≥0 J0(tuR).
Accordingly, by (5.4), we have

cε ≤ max
t≥0
Jε(tuR) = Jε(tε,RuR)

which implies that
lim sup
ε→0

cε ≤ J0(tRuR).

Taking the limit as R→∞ and using (5.2) we get

lim sup
ε→0

cε ≤ c0.

On the other hand, in view of (V1), we know that cε ≥ c0 for all ε > 0. Then we can conclude
that cε → c0 as ε→ 0. �

6. Barycenter map and multiplicity of solutions to (1.1)

In this section, our main purpose is to apply the Ljusternik-Schnirelmann category theory to
prove a multiplicity result for problem (3.2). We begin proving the following technical result.

Lemma 6.1. Let εn → 0+ and {un}n∈N ⊂ Nεn be such that Jεn(un) → c0. Then there exists
{ỹn}n∈N ⊂ R3 such that the translated sequence

ũn(x) := un(x+ ỹn)

has a subsequence which converges in Hs(R3). Moreover, up to a subsequence, {yn}n∈N :=
{εn ỹn}n∈N is such that yn → y0 ∈M .

Proof. Since 〈J ′εn(un), un〉 = 0 and Jεn(un) → c0, it is easy to see that {un}n∈N is bounded in
Hεn . Let us observe that ‖un‖εn 9 0 since c0 > 0. Therefore, arguing as in Lemma 5 in [1], we
can find a sequence {ỹn}n∈N ⊂ R3 and constants R,α > 0 such that

lim inf
n→∞

∫
BR(ỹn)

|un|2dx ≥ α.

Set ũn(x) := un(x+ ỹn). Then {ũn}n∈N is bounded in Hs(R3), and we may assume that

ũn ⇀ ũ weakly in Hs(R3),

for some ũ 6= 0. Let {tn}n∈N ⊂ (0,+∞) be such that ṽn := tnũn ∈ N0 (see Lemma 5.1-(i)), and
set yn := εn ỹn. Then, using (g2) and Lemma 2.3-(4), we can see that

c0 ≤ J0(ṽn) ≤ 1

2

∫
R3

|(−∆)
s
2 ṽn|2 + V (εn x+ yn)ṽ2

ndx+
1

4

∫
R3

φtṽn ṽ
2
ndx−

∫
R3

(
F (ṽn) +

1

2∗s
|ṽn|2

∗
s

)
dx

≤ t2n
2

∫
R3

|(−∆)
s
2un|2 + V (εn z)u

2
ndx+

t4n
4

∫
R3

φtunu
2
ndx−

∫
R3

G(εn z, tnun)dx

= Jεn(tnun) ≤ Jεn(un) = c0 + on(1),

which gives

J0(ṽn)→ c0 and {ṽn}n∈N ⊂ N0. (6.1)

In particular, (6.1) yields that {ṽn}n∈N is bounded in Hs(R3), so we may assume that ṽn ⇀ ṽ.
Obviously, {tn}n∈N is bounded and we may assume that tn → t0 ≥ 0. If t0 = 0, from the
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boundedness of {ũn}n∈N, we get ‖ṽn‖0 = tn‖ũn‖0 → 0, that is J0(ṽn) → 0 in contrast with the
fact c0 > 0. Then, t0 > 0. From the uniqueness of the weak limit we have ṽ = t0ũ and ṽ 6= 0.
Using Lemma 5.3 we deduce that

ṽn → ṽ in Hs(R3), (6.2)

which implies that ũn → ũ in Hs(R3) and

J0(ṽ) = c0 and 〈J ′0(ṽ), ṽ〉 = 0.

Now, we show that {yn}n∈N admits a subsequence, still denoted by {yn}n∈N, such that yn → y0 ∈
M . Assume by contradiction that {yn}n∈N is not bounded. Then there exists a subsequence, still
denoted by {yn}n∈N, verifying |yn| → +∞. Since un ∈ Nεn , we can see that

‖ũn‖20 ≤ [ũn]2 +

∫
R3

V (εn x+ yn)ũ2
ndx+

∫
R3

φtũn ũ
2
ndx =

∫
R3

g(εn x+ yn, ũn)ũn dx.

Take R > 0 such that Λ ⊂ BR(0), and assume that |yn| > 2R for n large. Thus, for any
x ∈ BR/ εn(0) we get | εn x+ yn| ≥ |yn| − | εn x| > R for all n large enough.
Hence, from the definition of g, we deduce that

‖vn‖20 ≤
∫
BR/ εn (0)

f̃(ũn)ũn dx+

∫
R3\BR/ εn (0)

f(ũn)ũn + ũ2∗s
n dx.

Since ũn → ũ in Hs(R3), we can apply the Dominated Convergence Theorem to see that∫
R3\BR/ εn (0)

f(ũn)ũn dx = on(1).

Therefore

‖ũn‖20 ≤
1

K

∫
BR/ εn (0)

V0ũ
2
n dx+ on(1),

which yields (
1− 1

K

)
‖ũn‖20 ≤ on(1).

But ũn → ũ 6= 0 and K > 2, so we get a contradiction. Thus {yn}n∈N is bounded and, up
to a subsequence, we may assume that yn → y0. If y0 /∈ Λ, then there exists r > 0 such that
yn ∈ Br/2(y0) ⊂ R3 \ Λ for any n large enough. Reasoning as before, we get a contradiction.

Hence y0 ∈ Λ. Now, we show that V (y0) = V0. Assume by contradiction that V (y0) > V0. Taking
into account (6.2), Fatou’s Lemma and the invariance of R3 by translations, we have

c0 < lim inf
n→∞

[1

2

(∫
R3

|(−∆)
s
2 ṽn|2 + V (εn z + yn)ṽ2

n

)
+

1

4

∫
R3

φṽn ṽ
2
ndx−

∫
R3

(
F (ṽn) +

1

2∗s
|ṽn|2

)
dx
]

≤ lim inf
n→∞

Jεn(tnun) ≤ lim inf
n→∞

Jεn(un) = c0

which is impossible. Therefore, in view of (V2), we can conclude that y0 ∈M . �

Now, we aim to relate the number of positive solutions of (3.2) to the topology of the set Λ. For
this reason, we take δ > 0 such that

Mδ = {x ∈ R3 : dist(x,M) ≤ δ} ⊂ Λ,

and we consider η ∈ C∞0 (R+, [0, 1]) be such that η(t) = 1 if 0 ≤ t ≤ δ
2 and η(t) = 0 if t ≥ δ.

For any y ∈ Λ, we define

Ψε,y(x) = η(| ε x− y|)w
(
ε x− y
ε

)
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where w ∈ Hs(R3) is a positive ground state solution to problem (5.1) (see Theorem 5.1).
Let tε > 0 be the unique number such that

max
t≥0
Jε(tΨε,y) = Jε(tεΨε,y).

Finally, we introduce Φε : M → Nε given by

Φε(y) = tεΨε,y.

Lemma 6.2. The functional Φε satisfies the following limit

lim
ε→0
Jε(Φε(y)) = c0 uniformly in y ∈M.

Proof. Assume by contradiction that there exist δ0 > 0, {yn}n∈N ⊂M and εn → 0 such that

|Jεn(Φεn(yn))− c0| ≥ δ0. (6.3)

Let us observe that using the change of variable z =
εn x− yn

εn
, if z ∈ B δ

εn

(0), it follows that

εn z ∈ Bδ(0) and εn x + yn ∈ Bδ(yn) ⊂ Mδ ⊂ Λ. Then, recalling that G(x, t) = F (t) + 1
2∗s
t2
∗
s for

(x, t) ∈ Λ× R+ we have

Jε(Φεn(yn)) =
t2εn
2

(∫
R3

|(−∆)
s
2 (η(| εn z|)w(z))|2 dz +

∫
R3

V (εn z + yn)(η(| εn z|)w(z))2 dz

)
+
t4εn
4

∫
R3

φtη(| εn z|)(η(| εn z|)w(z))2dz −
∫
R3

F (tεnη(| εn z|)w(z)) dz

− t
2∗s
εn

2∗s

∫
R3

(η(| εn z|)w(z))2∗sdz. (6.4)

Now, we aim to show that the sequence {tεn}n∈N verifies tεn → 1 as εn → 0. From the definition
of tεn , it follows that 〈J ′εn(Φεn(yn)),Φεn(yn)〉 = 0 which gives

t2εn

(∫
R3

|(−∆)
s
2 (η(| εn z|)w(z))|2 + V (εn z + yn)(η(| εn z|)w(z))2 dz

)
+ t4εn

∫
R3

φtη(| εn z|)(η(| εn z|)w(z))2dz

=

∫
R3

g(εn z + yn, tεnη(| εn z|)w(z))tεnη(| εn z|)w(z)dz. (6.5)

Since η = 1 in B δ
2
(0) ⊂ B δ

εn

(0) for all n sufficiently large, (6.5) yields

1

t2εn

∫
R3

|(−∆)
s
2 Ψεn,yn |2 + V (εn x)Ψ2

εn,yndx+

∫
R3

φtΨεn,ynΨ2
εn,yndx

=

∫
R3

f(tεnΨεn,yn) + (tεnΨεn,yn)2∗s−1

(tεnΨεn,yn)3
Ψ4
εn,yndx

≥ t2∗s−4
εn

∫
B δ

2
(0)
|w(z)|2∗s dz.

From the continuity of w we can find a vector ẑ ∈ R3 such that

w(ẑ) = min
z∈B δ

2

w(z) > 0,



FRACTIONAL SCHRÖDINGER-POISSON SYSTEMS 27

which implies that

1

t2εn

∫
R3

|(−∆)
s
2 Ψεn,yn |2 + V (εn x)Ψ2

εn,yndx+

∫
R3

φtΨεn,ynΨ2
εn,yndx

≥ t2∗s−4
εn w2∗s (ẑ)|B δ

2
(0)|. (6.6)

Now, assume by contradiction that tεn → ∞. Let us observe that Lemma 2.2, Lemma 2.3-(7)
and the Dominated Convergence Theorem yield

‖Ψεn,yn‖2εn → ‖w‖
2
0 ∈ (0,∞) and

∫
R3

φtΨεn,ynΨ2
εn,yndx→

∫
R3

φtww
2dx

|Ψεn,yn |2∗s → |w|2∗s and

∫
R3

f(tεnΨεn,yn)

(tεnΨεn,yn)3
Ψ4
εn,yndx→

∫
R3

f(t0w)

(t0w)3
w4dx.

(6.7)

Hence, using tεn →∞, (6.6) and (6.7) we obtain∫
R3

φtww
2dx =∞,

that is a contradiction. Therefore {tεn}n∈N is bounded and, up to subsequence, we may assume
that tεn → t0 for some t0 ≥ 0. Let us prove that t0 > 0. Suppose by contradiction that t0 = 0.
Then, taking into account (6.7) and the growth assumptions on g, we can see that (6.5) gives

‖tεnΨεn,yn‖2εn → 0

which is impossible in view of tεnΨεn,yn ∈ Nεn and Remark 3.2. Hence t0 > 0. Thus, taking the
limit as n→∞ in (6.5), we deduce from (6.7) and the Dominated Convergence Theorem that

1

t20
‖w‖20 +

∫
R3

φtww
2dx =

∫
R3

f(t0w) + (t0w)2∗s−1

(t0w)3
w4 dx.

In the light of w ∈ N0 and (f5) we can infer that t0 = 1. Then, passing to the limit as n→∞ in
(6.4), by tεn → 1 and (6.7) we obtain

lim
n→∞

Jεn(Φεn(yn)) = J0(w) = c0,

which contradicts (6.3). �

At this point, we are in the position to define the barycenter map. For any δ > 0, we take
ρ = ρ(δ) > 0 such that Mδ ⊂ Bρ, and we consider Υ : R3 → R3 given by

Υ (x) =

{
x if |x| < ρ
ρx
|x| if |x| ≥ ρ.

We define the barycenter map βε : Nε → R3 as follows

βε(u) =

∫
R3

Υ (ε x)u2(x) dx∫
R3

u2(x) dx

.

Arguing as Lemma 5.4 in [27], we can see that the function βε verifies the following limit:

Lemma 6.3.

lim
ε→0

βε(Φε(y)) = y uniformly in y ∈M.
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Next, we introduce a subset Ñε of Nε taking a function h1 : R+ → R+ such that h1(ε) → 0 as
ε→ 0, and setting

Ñε = {u ∈ Nε : Jε(u) ≤ c0 + h1(ε)} .

Fixed y ∈ M , from Lemma 6.2 it follows that h1(ε) = |Jε(Φε(y))− c0| → 0 as ε→ 0. Therefore

Φε(y) ∈ Ñε, and Ñε 6= ∅ for any ε > 0. Moreover, proceeding as in Lemma 5.5 in [27], we have:

Lemma 6.4. For any δ > 0, there holds that

lim
ε→0

sup
u∈Ñε

dist(βε(u),Mδ) = 0.

In order to prove that (3.2) admits at least catMδ
(M) positive solutions, we recall the following

useful abstract result whose proof can be found in [13].

Lemma 6.5. Let I, I1 and I2 be closed sets with I1 ⊂ I2, and let π : I → I2 and ψ : I1 → I be
two continuous maps such that π ◦ ψ is homotopically equivalent to the embedding j : I1 → I2.
Then catI(I) ≥ catI2(I1).

Since S+
ε is a not complete metric space, we cannot apply directly standard Ljusternik-Schnirelmann

theory. Anyway, we will make use of some abstract category results contained in [38].

Theorem 6.1. Assume that (V1)-(V2) and (f1)-(f4) hold true. Then, given δ > 0 there exists
ε̄δ > 0 such that, for any ε ∈ (0, ε̄δ), problem (3.2) has at least catMδ

(M) positive solutions.

Proof. For any ε > 0, we consider the map αε : M → S+
ε defined by αε(y) = m−1

ε (Φε(y)).
Using Lemma 6.2, we can see that

lim
ε→0

ψε(αε(y)) = lim
ε→0
Jε(Φε(y)) = c0 uniformly in y ∈M. (6.8)

Set

S̃+
ε = {w ∈ S+

ε : ψε(w) ≤ c0 + h1(ε)},

where h1(ε) → 0 as ε → 0+. It follows from (6.8) that h1(ε) = |ψε(αε(y)) − c0| → 0 as ε → 0+

uniformly in y ∈M , so there exists ε̄ > 0 such that ψε(αε(y)) ∈ S̃+
ε and S̃+

ε 6= ∅ for all ε ∈ (0, ε̄).
In the light of Lemma 3.2-(ii), Lemma 6.2, Lemma 6.3 and Lemma 6.4, we can find ε̄ = ε̄δ > 0
such that the following diagram

M
Φε→ Φε(M)

m−1
ε→ αε(M)

mε→ Φε(M)
βε→Mδ

is well defined for any ε ∈ (0, ε̄).
Thanks to Lemma 6.3, and decreasing ε̄ if necessary, we can see that βε(Φε(y)) = y + θ(ε, y)
for all y ∈ M , for some function θ(ε, y) verifying |θ(ε, y)| < δ

2 uniformly in y ∈ M and for all
ε ∈ (0, ε̄). Then, it is easy to check that H(t, y) = y + (1 − t)θ(ε, y) with (t, y) ∈ [0, 1] ×M is a
homotopy between βε ◦ Φε = (βε ◦mε) ◦ (m−1

ε ◦ Φε) and the inclusion map id : M → Mδ. This
fact together with Lemma 6.5 implies that

catαε(M)αε(M) ≥ catMδ
(M). (6.9)

Applying Corollary 4.1, Lemma 5.4 and Corollary 28 in [38] with c = cε ≤ c0 + h1(ε) = d and

K = αε(M), we can deduce that ψε has at least catαε(M)αε(M) critical points on S̃+
ε . Taking into

account Proposition 3.1-(d) and (6.9), we can infer that (3.2) has at least catMδ
(M) solutions. �
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7. proof of theorem 1.1

This last section is devoted to the proof of Theorem 1.1 in which we prove that the solutions
obtained in Section 6 are indeed solutions of the original problem (1.1).

Firstly, we use a Moser iteration argument [29] to prove the following useful L∞-estimate for
the solutions of the modified problem (3.2).

Lemma 7.1. Let εn → 0 and un ∈ Ñεn be a solution to (3.2). Then, up to a subsequence,
vn := un(·+ ỹn) ∈ L∞(RN ), and there exists C > 0 such that

|vn|∞ ≤ C for all n ∈ N.

Proof. For any L > 0 and β > 1, let us define the function

γ(vn) = γL,β(vn) = vnv
2(β−1)
L,n ∈ Hε

where vL,n = min{vn, L}. Since γ is an increasing function, we have

(a− b)(γ(a)− γ(b)) ≥ 0 for any a, b ∈ R.

Let us consider

E(t) =
|t|2

2
and Γ(t) =

∫ t

0
(γ′(τ))

1
2dτ.

Then, applying Jensen inequality, we get for all a, b ∈ R such that a > b,

E ′(a− b)(γ(a)− γ(b)) = (a− b)(γ(a)− γ(b)) = (a− b)
∫ a

b
γ′(t)dt

= (a− b)
∫ a

b
(Γ′(t))2dt ≥

(∫ a

b
(Γ′(t))dt

)2

.

The same argument works when a ≤ b. Therefore

E ′(a− b)(γ(a)− γ(b)) ≥ |Γ(a)− Γ(b)|2 for any a, b ∈ R. (7.1)

By (7.1), we can see that

|Γ(vn)(x)− Γ(vn)(y)|2 ≤ (vn(x)− vn(y))((vnv
2(β−1)
L,n )(x)− (vnv

2(β−1)
L,n )(y)). (7.2)

Choosing γ(vn) = vnv
2(β−1)
L,n as test function in (3.2), and using (7.2) and φtun ≥ 0, we obtain

[Γ(vn)]2 +

∫
R3

Vn(x)|vn|2v2(β−1)
L,n dx

≤
∫∫

R6

(vn(x)− vn(y))

|x− y|N+2s
((vnv

2(β−1)
L,n )(x)− (vnv

2(β−1)
L,n )(y)) dxdy +

∫
R3

Vn(x)|vn|2v2(β−1)
L,n dx

≤
∫
R3

gn(vn)vnv
2(β−1)
L,n dx, (7.3)

where we used the notations Vn(x) = V (εn x+ εn ỹn) and gn(vn) = g(εn x+ εn ỹn, vn).
Since

Γ(vn) ≥ 1

β
vnv

β−1
L,n ,

and applying Theorem 2.1, we have

[Γ(vn)]2 ≥ S∗|Γ(vn)|22∗s ≥
(

1

β

)2

S∗|vnvβ−1
L,n |

2
2∗s
. (7.4)
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From assumptions (g1) and (g2), for any ξ > 0 there exists Cξ > 0 such that

|gn(vn)| ≤ ξ|vn|+ Cξ|vn|2
∗
s−1. (7.5)

Taking ξ ∈ (0, V0), and using (7.4) and (7.5), we can see that (7.3) yields

|wL,n|2L2∗s (R3)
≤ Cβ2

∫
R3

|vn|2
∗
sv

2(β−1)
L,n dx. (7.6)

where wL,n := vnv
β−1
L,n . Now, we take β = 2∗s

2 and fix R > 0. Recalling that 0 ≤ vL,n ≤ vn, we
have∫

R3

v2∗s
n v

2(β−1)
L,n dx =

∫
R3

v2∗s−2
n v2

nv
2∗s−2
L,n dx

=

∫
R3

v2∗s−2
n (vnv

2∗s−2

2
L,n )2dx

≤
∫
{vn<R}

R2∗s−2v2∗s
n dx+

∫
{vn>R}

v2∗s−2
n (vnv

2∗s−2

2
L,n )2dx

≤
∫
{vn<R}

R2∗s−2v2∗s
n dx+

(∫
{vn>R}

v2∗s
n dx

) 2∗s−2

2∗s
(∫

R3

(vnv
2∗s−2

2
L,n )2∗sdx

) p
2∗s
. (7.7)

Since vn is bounded in ∈ L2∗s (R3), we can see that for any R sufficiently large(∫
{vn>R}

v2∗s
n dx

) 2∗s−2

2∗s

≤ ε β−2. (7.8)

Putting together (7.6), (7.7) and (7.8) we get(∫
R3

(vnv
2∗s−2

2
L,n )2∗s

) 2
2∗s
≤ Cβ2

∫
R3

R2∗s−2v2∗s
n dx <∞

and taking the limit as L→∞, we obtain vn ∈ L
(2∗s)

2

2 (R3).
Now, using 0 ≤ vL,n ≤ vn and passing to the limit as L→∞ in (7.6), we have

|vn|β2

Lβ2
∗
s (R3)

≤ Cβ2

∫
R3

v2∗s+2(β−1)
n ,

from which we deduce that(∫
R3

vβ2∗s
n dx

) 1
(β−1)2∗s

≤ (Cβ)
1

β−1

(∫
R3

v2∗s+2(β−1)
n

) 1
2(β−1)

.

For m ≥ 1 we define βm+1 inductively so that 2∗s + 2(βm+1 − 1) = 2∗sβm and β1 = 2∗s
2 . Then we

have (∫
R3

vβm+12∗s
n dx

) 1
(βm+1−1)2∗s

≤ (Cβm+1)
1

βm+1−1

(∫
R3

v2∗sβm
n

) 1
2∗s(βm−1)

.

Let us define

Dm =

(∫
R3

v2∗sβm
n

) 1
2∗s(βm−1)

.
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Using an iteration argument, we can find C0 > 0 independent of m such that

Dm+1 ≤
m∏
k=1

(Cβk+1)
1

βk+1−1D1 ≤ C0D1.

Taking the limit as m→∞ we get |vn|∞ ≤ K for all n ∈ N. �

Now, we are ready to give the proof of our main result.

Proof of Theorem 1.1. Take δ > 0 such that Mδ ⊂ Λ. We begin proving that there exists ε̃δ > 0

such that for any ε ∈ (0, ε̃δ) and any solution uε ∈ Ñε of (3.2), it results

|uε|L∞(R3\Λε) < a. (7.9)

Assume by contradiction that for some subsequence {εn}n∈N such that εn → 0, we can find

uεn ∈ Ñεn such that J ′εn(uεn) = 0 and

|uεn |L∞(R3\Λεn ) ≥ a. (7.10)

Since Jεn(uεn) ≤ c0 + h1(εn) and h1(εn) → 0, we can argue as in the first part of the proof of
Lemma 6.1, to deduce that Jεn(uεn) → c0. In view of Lemma 6.1, we can find {ỹn}n∈N ⊂ R3

such that ũn = uεn(· + ỹn) → ũ in Hs(R3) and εn ỹn → y0 ∈ M . Now, if we choose r > 0 such
that Br(y0) ⊂ B2r(y0) ⊂ Λ, we can see that B r

εn
( y0εn ) ⊂ Λεn . Then, for any y ∈ B r

εn
(ỹn) it holds∣∣∣∣y − y0

εn

∣∣∣∣ ≤ |y − ỹn|+ ∣∣∣∣ỹn − y0

εn

∣∣∣∣ < 1

εn
(r + on(1)) <

2r

εn
for n sufficiently large.

Therefore

R3 \ Λεn ⊂ R3 \B r
εn

(ỹn) (7.11)

for any n big enough.
Now, we observe that ũn is a solution to

(−∆)sũn + ũn = ξn in R3,

where

ξn(x) := g(εn x+ εn ỹn, ũn)− Vn(x)ũn + ũn − φtũn ũn
and

Vn(x) := V (εn x+ εn ỹn).

Put ξ(x) := f(ũ)− V0ũ+ ũ− φtũũ. Using Lemma 7.1, the interpolation in the Lp spaces, ũn → ũ
in Hs(R3), the growth assumptions on g, εn ỹn → y0 ∈M and Lemma 2.3-(7) we can see that

ξn → ξ in Lp(R3) ∀p ∈ [2,∞),

so there exists C > 0 such that

|ξn|∞ ≤ C for any n ∈ N.

Consequently, ũn(x) = (K ∗ ξn)(x) =
∫
R3 K(x − z)ξn(z) dz, where K is the Bessel kernel and

satisfies the following properties [19]:
(i) K is positive, radially symmetric and smooth in R3 \ {0},

(ii) there is C > 0 such that K(x) ≤ C

|x|3+2s
for any x ∈ R3 \ {0},

(iii) K ∈ Lr(R3) for any r ∈ [1, 3
3−2s).
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Then, arguing as in Lemma 2.6 in [3], we can see that

ũn(x)→ 0 as |x| → ∞ (7.12)

uniformly in n ∈ N. Therefore there exists R > 0 such that

ũn(x) < a for |x| ≥ R,n ∈ N.

Hence uεn(x) < a for any x ∈ R3 \BR(ỹn) and n ∈ N. This fact and (7.11) show that there exists
ν ∈ N such that for any n ≥ ν and r/ εn > R we have

R3 \ Λεn ⊂ R3 \B r
εn

(ỹn) ⊂ R3 \BR(ỹn),

which implies that uεn(x) < a for any x ∈ R3 \ Λεn and n ≥ ν. This is impossible in view of
(7.10). Let ε̄δ > 0 be given by Theorem 6.1, and we fix ε ∈ (0, εδ) where εδ = min{ε̃δ, ε̄δ}. In the
light of Theorem 6.1, we know that problem (3.2) admits at least catMδ

(M) nontrivial solutions.

Let us denote by uε one of these solutions. Since uε ∈ Ñε satisfies (7.9), from the definition of g
it follows that uε is a solution of (3.1). Then û(x) = u(x/ ε) is a solution to (1.1), and we can
conclude that (1.1) has at least catMδ

(M) nontrivial solutions.
Finally, we study the behavior of the maximum points of solutions to problem (1.1). Take εn → 0
and consider a sequence {un}n∈N ⊂ Hεn of solutions to (3.1) as above. Let us observe that (g1)
implies that we can find γ > 0 such that

g(ε x, t)t ≤ V0

K
t2 for any x ∈ R3, t ≤ γ. (7.13)

Arguing as before, we can find R > 0 such that

|un|L∞(BcR(ỹn)) < γ. (7.14)

Moreover, up to extract a subsequence, we may assume that

|un|L∞(BR(ỹn)) ≥ γ. (7.15)

Indeed, if (7.15) does not hold, in view of (7.14) we can see that |un|L∞(R3) < γ. Then, using

〈J ′εn(un), un〉 = 0 and (7.13) we can infer

‖un‖2εn ≤ ‖un‖
2
εn +

∫
R3

φtunu
2
ndx =

∫
R3

g(εn x, un)un dx ≤
V0

K

∫
R3

u2
n dx

which yields ‖un‖εn = 0, and this is impossible. Hence (7.15) holds true. Taking into account
(7.14) and (7.15) we can deduce that the maximum points pn ∈ R3 of un belong to BR(ỹn).
Therefore pn = ỹn + qn, for some qn ∈ BR(0). Consequently, ηεn = εn ỹn + εn qn is the maximum
point of ûn(x) = un(x/ εn). Since |qn| < R for any n ∈ N and εn ỹn → y0 ∈M (in view of Lemma
6.1), from the continuity of V we can infer that

lim
n→∞

V (ηεn) = V (y0) = V0.

Let us conclude the proof of Theorem 1.1 by giving an estimate of the decay of solutions to (1.1).
According to Lemma 4.3 in [19], we know that there exists a positive function w such that

0 < w(x) ≤ C

1 + |x|3+2s
, (7.16)

and

(−∆)sw +
V0

2
w ≥ 0 in R3 \BR1 , (7.17)



FRACTIONAL SCHRÖDINGER-POISSON SYSTEMS 33

for some suitable R1 > 0. By (f1), the definition of g and (7.12), we can find R2 > 0 sufficiently
large such that

(−∆)sũεn +
V0

2
ũεn = g(εn x+ εn ỹεn , ũεn)−

(
Vn −

V0

2

)
ũεn − φtũεn ũεn

≤ g(εn x+ εn ỹεn , ũεn)− V0

2
ũεn ≤ 0 in R3 \BR2 . (7.18)

Choose R3 = max{R1, R2}, and we set

a = inf
BR3

w > 0 and w̃εn = (b+ 1)w − aũεn , (7.19)

where b = supn∈N |ũεn |∞ <∞. Now we prove that

w̃εn ≥ 0 in R3. (7.20)

We first note that (7.17), (7.18) and (7.19) yield

w̃εn ≥ ba+ w − ba > 0 in BR3 , (7.21)

(−∆)sw̃εn +
V0

2
w̃εn ≥ 0 in R3 \BR3 . (7.22)

Now, we argue by contradiction and we assume that there exists a sequence {x̄n,k} ⊂ R3 such
that

inf
x∈R3

w̃εn(x) = lim
k→∞

w̃εn(x̄n,k) < 0. (7.23)

By (7.12), (7.16) and the definition of w̃εn , it is clear that |w̃εn(x)| → 0 as |x| → ∞, uniformly
in n ∈ N. Thus we can deduce that {x̄n,k} is bounded, and, up to subsequence, we may assume
that there exists x̄n ∈ R3 such that x̄n,k → x̄n as k →∞. Thus, from (7.23), we get

inf
x∈R3

w̃εn(x) = w̃εn(x̄n) < 0. (7.24)

In the light of the minimality of x̄n and the representation formula for the fractional Laplacian
[16], we can see that

(−∆)sw̃εn(x̄n) = C(3, s)

∫
R3

2w̃εn(x̄n)− w̃εn(x̄n + ξ)− w̃εn(x̄n − ξ)
|ξ|3+2s

dξ ≤ 0. (7.25)

Taking into account (7.21) and (7.23) we can infer that x̄n ∈ R3 \BR3 . This together with (7.24)
and (7.25) yields

(−∆)sw̃εn(x̄n) +
V0

2
w̃εn(x̄n) < 0,

which contradicts (7.22). Thus, (7.20) holds true and using (7.16) we get

ũεn(x) ≤ C̃

1 + |x|3+2s
for all x ∈ R3, n ∈ N, (7.26)
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for some C̃ > 0. Since ûεn(x) = uεn( xεn ) = ũεn( xεn − ỹεn) and ηεn = εn ỹεn + εn qεn , from (7.26)
we obtain

0 < ûεn(x) = uεn

(
x

εn

)
= ũεn

(
x

εn
− ỹεn

)
≤ C̃

1 + | xεn − ỹεn |
3+2s

=
C̃ ε3+2s

n

ε3+2s
n +|x− εn ỹεn |3+2s

≤ C̃ ε3+2s
n

ε3+2s
n +|x− ηεn |3+2s

∀x ∈ R3.

This ends the proof of Theorem 1.1. �

Acknowledgments.

The author warmly thanks the anonymous referee for her/his useful and nice comments on the
paper.

References
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[9] D. Applebaum, Lévy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, 93.
Cambridge University Press, Cambridge, 2004. xxiv+384 pp.

[10] A. Azzollini, P. d’Avenia, and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a
general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 2, 779–791.
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