In this paper, we present a lightweight hardware design for a recently proposed quantum-safe key encapsulation mechanism based on QC-LDPC codes called LEDAkem, which has been admitted as a round-2 candidate to the NIST post-quantum standardization project. Existing implementations focus on high speed while few of them take into account area or power efficiency, which are particularly decisive for low-cost or power constrained IoT applications. The solution we propose aims at maximizing the metric of area efficiency by rotating the QC-LDPC code representations amongst the block RAMs in digit level. Moreover, optimized parallelized computing techniques, lazy accumulation and block partition are exploited to improve key decapsulation in terms of area and timing efficiency. We show for instance that our area-optimized implementation for 128-bit security requires 6.82× 1056.82×105 cycles and 2.26× 1062.26×106 cycles to encapsulate and decapsulate a shared secret, respectively. The area-optimized design uses only 39 slices (3 percent of the available logic) and 809 slices (39 percent of the available logic) for key encapsulation and key decapsulation respectively, on a small-size low-end Xilinx Spartan-6 FPGA.
Lightweight Key Encapsulation Using LDPC Codes on FPGAs / Hu, Jingwei; Baldi, Marco; Santini, Paolo; Zeng, Neng; Ling, San; Wang, Huaxiong. - In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. - ELETTRONICO. - 69:3(2020), pp. 327-341. [10.1109/TC.2019.2948323]
Lightweight Key Encapsulation Using LDPC Codes on FPGAs
Baldi, Marco;Santini, Paolo;
2020-01-01
Abstract
In this paper, we present a lightweight hardware design for a recently proposed quantum-safe key encapsulation mechanism based on QC-LDPC codes called LEDAkem, which has been admitted as a round-2 candidate to the NIST post-quantum standardization project. Existing implementations focus on high speed while few of them take into account area or power efficiency, which are particularly decisive for low-cost or power constrained IoT applications. The solution we propose aims at maximizing the metric of area efficiency by rotating the QC-LDPC code representations amongst the block RAMs in digit level. Moreover, optimized parallelized computing techniques, lazy accumulation and block partition are exploited to improve key decapsulation in terms of area and timing efficiency. We show for instance that our area-optimized implementation for 128-bit security requires 6.82× 1056.82×105 cycles and 2.26× 1062.26×106 cycles to encapsulate and decapsulate a shared secret, respectively. The area-optimized design uses only 39 slices (3 percent of the available logic) and 809 slices (39 percent of the available logic) for key encapsulation and key decapsulation respectively, on a small-size low-end Xilinx Spartan-6 FPGA.File | Dimensione | Formato | |
---|---|---|---|
Lightweight_Key_Encapsulation_Using_LDPC_Codes_on_FPGAs.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
1.78 MB
Formato
Adobe PDF
|
1.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
TC_2019_04_0172_revision.pdf
accesso aperto
Descrizione: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Licenza specifica dell’editore
Dimensione
6.03 MB
Formato
Adobe PDF
|
6.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.