
18 July 2024

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

Lightweight Key Encapsulation Using LDPC Codes on FPGAs / Hu, Jingwei; Baldi, Marco; Santini, Paolo;
Zeng, Neng; Ling, San; Wang, Huaxiong. - In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. -
ELETTRONICO. - 69:3(2020), pp. 327-341. [10.1109/TC.2019.2948323]

Original

Lightweight Key Encapsulation Using LDPC Codes on FPGAs

Publisher:

Published
DOI:10.1109/TC.2019.2948323

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/271010 since: 2024-07-02T08:38:44Z

This is the peer reviewd version of the followng article:

note finali coverpage

1

Lightweight Key Encapsulation Using LDPC
Codes on FPGAs

Jingwei Hu, Marco Baldi, Paolo Santini, Neng Zeng, San Ling, Huaxiong Wang

Abstract—In this paper, we present a lightweight hardware design for a recently proposed quantum-safe key encapsulation
mechanism based on QC-LDPC codes called LEDAkem, which has been admitted as a round-2 candidate to the NIST post-quantum
standardization project. Existing implementations focus on high speed while few of them take into account area or power efficiency,
which are particularly decisive for low-cost or power constrained IoT applications. The solution we propose aims at maximizing the
metric of area efficiency by rotating the QC-LDPC code representations amongst the block RAMs in digit level. Moreover, optimized
parallelized computing techniques, lazy accumulation and block partition are exploited to improve key decapsulation in terms of area
and timing efficiency. We show for instance that our area-optimized implementation for 128-bit security requires 6.82× 105 cycles and
2.26× 106 cycles to encapsulate and decapsulate a shared secret, respectively. The area-optimized design uses only 39 slices (3% of
the available logic) and 809 slices (39% of the available logic) for key encapsulation and key decapsulation respectively, on a small-size
low-end Xilinx Spartan-6 FPGA.

Index Terms—Post-Quantum Cryptography, Key Encapsulation Mechanism, QC-LDPC Code, FPGA Implementation.

F

1 INTRODUCTION

Key encapsulation mechanisms (KEMs) are a class of
encryption techniques designed to secure symmetric cryp-
tographic key material for transmission using asymmetric
(public-key) algorithms. Efficient and robust quantum-safe
KEM design is a crucial and urgent topic in the crypto-
graphic community. Recent years witnessed the NIST call
for efficient and secure post-quantum KEMs within the
post-quantum cryptography standardization competition
[1]. The construction of a commercial quantum computer
in not-so-distant future is a desperate threat to quantum-
vulnerable primitives, which rely on the hardness of the
integer factorization or discrete logarithm problems such
as the Diffie-Hellman key exchange, the Rivest-Shamir-
Adleman (RSA) cryptosystem and Elliptic Curve Cryptog-
raphy. Shor’s algorithm [2] can be deployed on a quantum
computer to solve both the integer factorization problem
and the discrete logarithm problem in polynomial time.
Code-based cryptosystems, which build their security on
the hardness of decoding general linear codes, are among
the most promising quantum-resistant candidates for which
no known polynomial time attack running on a quantum
computer exists.

McEliece proposed the first code-based cryptosystem
in 1978 [3], which uses Goppa codes [4] as the underly-
ing coding system. Goppa code-based schemes yield large
public keys, which limit the deployment of such systems
to resource-constrained scenarios. Niederreiter proposed in
1986 another code-based system [5] exploiting the same
trapdoor, but using syndromes instead of codewords and
parity-check matrices instead of generator matrices to con-
struct the ciphertext and the key, respectively. It has been

J. Hu, N. Zeng , S. Ling and H. Wang are with the Division of Mathematical
Sciences, Nanyang Technological University, Singapore. M. Baldi and P.
Santini are with the Department of Information Engineering, Marche Poly-
technic University, Italy. e-mail: {davidhu, HXWang, lingsan}@ntu.edu.sg,
ZENG0106@e.ntu.edu.sg, m.baldi@univpm.it, p.santini@pm.univpm.it.

proved that, when based on the same code family, the
Niederreiter and McEliece cryptosystems are equivalent [6]
and achieve the same security levels.

Active research is focused on replacing Goppa codes
with other families of structured codes that might lead to
key size reduction. Nevertheless, this attempt may also com-
promise the system security. For example, some McEliece
variants based on low-density parity-check (LDPC) codes
[7], quasi-cyclic low-density parity-check (QC-LDPC) codes
[8], quasi-dyadic (QD) codes [9], convolutional codes [10],
generalized Reed-Solomon (GRS) codes [11], and rank-
metric codes [12], [13] have been successfully attacked. Nev-
ertheless, some variants exploiting QC-LDPC and quasi-
cyclic moderate-density parity-check (QC-MDPC) codes
[14], [15], [16] have been shown to counteract existing
attacks while achieving compact keys. A variety of KEMs
built on the Niederreiter cryptosystem and LDPC/MDPC
codes such as LEDAkem [17], CAKE [18], BIKE [19], have
also started to appear in the literature.

Recently, a new statistical attack, called reaction attack
[20], [21], [22] has been devised to recover the key by
exploiting the information leaked from decoding failures
in QC-LDPC and QC-MDPC code-based systems. The re-
action attack is further enhanced in [23], where an error
pattern chaining method is introduced to generate multiple
undecodable error patterns from an initial error pattern,
thus improving the performance of such a reaction at-
tack against instances with only indistinguishability under
chosen-plaintext attack (IND-CPA).

1.1 Related work

Cryptographic hardware for the classical McEliece/Nieder-
reiter schemes based on Goppa codes has been extensively
studied in the last decade. In 2009, the first FPGA-based
implementation of the McEliece cryptosystem was proposed

2

targeting a Xilinx Spartan-3 FPGA and encrypting and
decrypting data in 1.07 ms and 2.88 ms, respectively, us-
ing security parameters achieving 80-bit security [24]. The
authors of [25] presented another accelerator for McEliece
encryption with binary Goppa codes on a more powerful
Virtex5-LX110T, which is capable to encrypt and decrypt
a block in 0.5 ms and 1.3 ms, respectively, providing a
similar level of security. The solution in [26] based on hard-
ware/software co-design on a Spartan3-1400AN decrypts a
block in 1 ms at 92 MHz with the same level of security.
Heyse and Güneysu in [27] report that a Goppa code-based
Niederreiter decryption operation consumes 58.78 µs on a
Virtex6-LX240T FPGA for 80-bit security (with parameters
n = 2048 and t = 27). Wang et.al. presented in [28]
an FPGA-based key generator for the Goppa code-based
Niederreiter cryptosystem, and later in [29] a full implemen-
tation that includes modules for encryption, decryption, and
key generation. Their designs decrypt the ciphertext in 60 µs
for 256-bit security on a Stratix V FPGA.

The first implementation of the MDPC code-based
McEliece cryptosystem on embedded devices was presented
in [30] in 2013. For 80-bit security, it is reported to run
decryption in 125 µs with over 10,000 slices on Xilinx Virtex-
6. A lightweight MDPC code-based McEliece system has
been implemented on FPGAs by sequentially manipulating
cyclic rotations of the private key in block RAMs [31]. This
lightweight design achieves circuit compactness requiring
64 slices for encryption and 148 slices for decryption on
a low-end Xilinx Spartan-6 device. An area-time efficient
MDPC code-based Niederreiter system has been imple-
mented on FPGAs exploiting a resource balanced MDPC
decoding unit [32]. Experimental results show that such an
architecture decrypts a message in 65 µs by using about
8,000 slices on a Virtex-6 FPGA.

1.2 Contribution
This paper presents the first efficient and scalable FPGA-
based cryptographic hardware for a post-quantum KEM
using LDPC codes (LEDAkem). The contributions include:

• a generic and scalable hardware description of
LEDAkem for all recommended parameter sets rang-
ing from 128-bit to 256-bit security;

• a new digit-level quasi-cyclic rotation for key encap-
sulation on embedded hardware. This approach is
useful for any quasi-cyclic code and more efficient in
terms of processing speed and area footprint;

• optimized block partitioning and lazy accumulation
techniques to achieve optimal timing efficiency of
key decapsulation;

• a concrete experimental instance for 128-bit security
that demonstrates the efficiency of our proposed
methods on both high-end and low-end FPGAs.

1.3 Outline
The paper is organized as follows. In Section 1 we describe
LEDAkem. In Section 2 we present design considerations
for implementing LEDAkem on reconfigurable devices. In
Section 3 a generic lightweight hardware architecture for
LEDAkem is presented and discussed. In Section 4 experi-
mental results on Xilinx FPGAs are shown to demonstrate

TABLE 1: LEDAkem parameters for each NIST security
category [17], [33].

Category n0 Original Submission Revised
p dv m t DFR p dv m t DFR

1
2 27,779 17 [4,3] 224 ≈ 8.3· 10−9 14,939 11 [4,3] 136 ≈ 1.16× 10−8

3 18,701 19 [3,2,2] 141 ≤ 10−9 7,853 9 [4,3,2] 86 ≤ 10−9

4 17,027 21 [4,1,1,1] 112 ≤ 10−9 7,547 13 [2,2,2,1] 69 ≤ 10−9

2-3
2 57,557 17 [6,5] 349 ≤ 10−8 24,693 13 [5,3] 199 ≈ 2× 10−9

3 41,507 19 [3,4,4] 220 ≤ 10−8 16,067 11 [4,4,3] 127 ≤ 10−9

4 35,027 17 [4,3,3,3] 175 ≤ 10−8 14,341 15 [3,2,2,2] 101 ≤ 10−9

4-5
2 99,053 19 [7,6] 474 ≤ 10−8 36,877 11 [7,6] 267 ≤ 10−9

3 72,019 19 [7,4,4] 301 ≤ 10−8 27,437 15 [4,4,3] 169 ≤ 10−9

4 60,509 23 [4,3,3,3] 239 ≤ 10−8 22,691 13 [4,3,3,3] 134 ≤ 10−9

the efficiency of the proposed solutions. In Section 5 we
draw some conclusions.

2 PRELIMINARIES OF LEDAKEM

A novel code-based key encapsulation mechanism using
LDPC codes, called LEDAkem [17], was proposed by Baldi
et. al in 2018. The use of a QC-LDPC code C(n, k, p) in
LEDAkem allows key size reduction with respect to un-
structured codes. LEDAkem has been originally been pro-
posed as a candidate for the NIST call for Post-Quantum
Cryptography Standardization that defines 5 security cate-
gories, numbered from 1 to 5 and characterized by increas-
ing security levels [34]. The authors proposed nine instances
of LEDAkem (as shown in the left part of Table 1), with key
sizes starting from 3480 bytes at the lowest security level.
New parameters were announced in March 2019, with tight
key sizes starting at 1868 bytes, as shown in the right part
of Table 1. The use of quasi-cyclic codes brings a beneficial
reduction of memory storage required for public keys, for
which only the first row/column of each circulant block
needs to be stored (the remaining part can be recovered
through cyclic rotations), thus resulting in public key sizes
considerably smaller than those of other candidates relying
on different families of codes. LEDAkem currently is one
of the 17 round-2 candidate algorithms of the NIST post-
quantum cryptography standardization process [17].

The LEDAkem primitives are described next. Algo-
rithm 1 describes the key generation part of the scheme.
Both private and public keys consist of binary quasi-cyclic
matrices which are all formed by p×p circulant blocks, being
p an integer properly chosen. The private key is formed by
the two matricesH andQ. The public keyM corresponds to
the systematic form of L = HQ, which is obtained through
multiplication by the inverse of the rightmost circulant block
Ln0−1 of L. Since M is systematic, it suffices to use the left
part Ml as the public key.

Algorithm 2 describes how to encapsulate an ephemeral
random secret e. Note that this random secret acts as the
binary error vector with weight t. Bob encapsulates the
shared secret e by fetching the public key Ml and then
computing s = [Ml|I]eT . The public syndrome vector s
representing the encapsulated secret is then sent out.

Algorithm 3 describes the decapsulation of the received
ciphertext s into the original error vector e. The syndrome
s can be written as s = MeT = L−1

n0−1HQe
T . First, Alice

computes s′ = Ln0−1s = HQeT . Then, an algorithm
called Q-decoder is exploited to perform QC-LDPC decod-
ing through H and Q, in order to recover e from s′.

The public code in LEDAkem is defined by the parity-
check matrix L = HQ, which is a QC-MDPC matrix.

3

Input: n, p, n0, and the public key Ml

Output: key pairs Ml, {H,Q}
1 randomly generate n0 sparse circulant matrices Hi with size p× p and

row/column weight dv to formulate the secret LDPC matrix as:

H = [H0|H1|H2| . . . |Hn0−1]

2 randomly generate n2
0 sparse circulant blocks Qi,j to formulate the secret

sparse matrix Q as:

Q =


Q0,0 Q0,1 · · · Q0,n0−1

Q1,0 Q1,1 · · · Q1,n0−1

...
...

. . .
...

Qn0−1,0 Qn0−1,1 · · · Qn0−1,n0−1


where the row/column weight of each block Qi,j is fixed as:

wt(Q) =


m0 m1 · · · mn0−1

mn0−1 m0 · · · mn0−2

...
...

. . .
...

m1 mn0−1 · · · m0



3 the secret key (SK) of LEDAkem is formed by {H,Q}
4 compute the matrix L from H and Q as:

L = HQ = [L0|L1|L2| . . . |Ln0−1]

5 compute the matrix M after inverting Ln0−1 as:

M = L
−1
n0−1L = [M0|M1|M2| . . . |Mn0−2|I] = [Ml|I]

6 the public key (PK) of LEDAkem is formed by Ml

7 return PK and SK

Algorithm 1: LEDAkem Key Generation [17]

Input: the public key Ml

Output: ciphertext s
1 randomly generate a binary vector e where len(e) = n = n0p, and

wt(e) = t

2 compute s = [Ml|I]eT
3 return s

Algorithm 2: LEDAkem Encapsulation [17]

Input: the secret key {H,Q} and Ln0−1, the last circulant block of the
matrix HQ

Output: shared secret e
1 compute s′ = Ln0−1s
2 decode s′ to e by Q-decoder: e = Q-decoderH,Q(s′)
3 return e

Algorithm 3: LEDAkem Decapsulation [17]

The public code is a QC-MDPC code also in BIKE, which
is another round-2 candidate to the NIST post-quantum
cryptography standardization process. However, differently
from BIKE and other QC-MDPC code-based schemes, the
private code structure employed in LEDAkem facilitates
decoding. In fact, the so-called Q-decoder used in LEDAkem
takes into account the multiplication by QT in obtaining
the error vector e′ to be corrected through decoding from
the error vector e used for encryption, that is, e′ = eQT .
Thus, decoding the private QC-LDPC code through the Q-
decoder allows achieving very fast decoding while keeping
the decryption failure rate (DFR) very small (in the order of
10−9 or less).

TABLE 2: Timing diagram for FLIP to update one bit of e

READ Ltr READ S’ SHIFT 8bit+SHIFT 1bit WRITE S’
cycle counts 1 1 #shift+1 1

3 DESIGN DECISIONS FOR LIGHTWEIGHT ORI-
ENTED CONFIGURABLE DEVICES

In this section, we introduce some techniques to implement
the main functions of LEDAkem (with the revised parame-
ter sets) on small, embedded systems. In particular, we thor-
oughly describe the manipulation of digit-level rotations in
block RAMs (i.e., step-2 in Algorithm 2), the Q-decoder, and
some other techniques for key decapsulation.

Input: a cyclic matrix stored in RAM B[·] where B[·] has m = d pd e
entries, and len(B[0]) = ∆, len(B[i, i 6= 0]) = d

Output: B[·] rotated by one bit
1 cache← 0
2 for i← m− 1 to 0 do
3 B[i]← (B[i] << 1)|cache
4 cache← MSB(B[i])

// cache the highest bit of B[i]

5 B[m− 1]← B[m− 1]|cache
// update the lowest bit of B[m− 1]

6 return B[·]

Algorithm 4: Cyclic rotation by one bit (Rot Bit)

Input: a cyclic matrix stored in RAM B[·] where B[·] has m = d pd e
entries, and len(B[0]) = ∆, len(B[i, i 6= 0]) = d

Output: B[·] rotated by one digit
1 cache1 ← B[m− 1]
2 for i← m− 2 to 1 do
3 cache2 ← B[i]
4 B[i]← cache1

5 cache1 ← cache2

6 B[m− 1]← B[0] << (d−∆) + cache1 >> ∆
// update B[m− 1] by concatenating B[0] and the

highest d−∆ bits of cache1

7 B[0]← cache1&(2∆ − 1)
// update B[0] by truncating cache1 to its lowest ∆

bits
8 return B[·]

Algorithm 5: Cyclic rotation by one digit (Rot Digit)

Input: a cyclic matrix stored in RAM B[·] where B[·] has m = d pd e
entries, and len(B[0]) = ∆, len(B[i, i 6= 0]) = d

Output: B[·] rotated by n digits
1 for i← n to 0 do
2 cache[i]← B[i]

// cache the leading n+ 1 entries in B[·]

3 for i← 0 to n− 1 do
// update B[i, i = 1, 2, · · · ,m− n− 1]

4 j ← m− 1− i
5 cache1 ← B[j]
6 while j> n do
7 cache2 ← B[j − n]
8 B[j − n]← cache1

9 cache1 ← cache2

10 j ← j − n

11 B[0]← B[n]&(2∆ − 1)
12 cache1 ← B[n] >> ∆
13 for i← 0 to n− 1 do

// update the last n entries in B[·]
14 cache2 ← cache[n− 1− i]&(2∆ − 1)
15 B[m− 1− i]← cache2 << (d−∆) + cache1

16 cache1 ← cache[n− 1− i] >> ∆

17 return B[·]

Algorithm 6: Multiple cyclic rotation by one digit
(Rot MDigit)

4

Input: a cyclic matrix stored in RAM B[·]
Output: B[·] rotated by l bit

1 for i← 0 to l− 1 do
2 B[·]← Rot Bit(B[·])

3 return B[·]

Algorithm 7: Matrix cyclic rotation in bit-by-bit fashion

Input: a cyclic matrix stored in RAM B[·] where len(B[i, i 6= 0]) = d
Output: B[·] rotated by l bit

1 q · · · l′ ← l÷ d
2 for i← 0 to q − 1 do
3 B[·]← Rot Digit(B[·])

4 for i← 0 to l′ − 1 do
5 B[·]← Rot Bit(B[·])

6 return B[·]

Algorithm 8: Matrix cyclic rotation in digit-by-digit
fashion

Input: a cyclic matrix stored in RAM B[·] where len(B[i, i 6= 0]) = d
Output: B[·] rotated by l bit

1 q1 · · · l′ ← l÷ nd
2 q2 · · · l′′ ← l′ ÷ d
3 for i← 0 to q1 − 1 do
4 B[·]← Rot MDigit(B[·])

5 for i← 0 to q2 − 1 do
6 B[·]← Rot Digit(B[·])

7 for i← 0 to l′′ − 1 do
8 B[·]← Rot Bit(B[·])

9 return B[·]

Algorithm 9: Matrix cyclic rotation in multiple digit-
by-digit fashion

3.1 Cyclic rotation in digit-by-digit fashion

The most important operation regarding key encapsula-
tion/decapsulation is the quasi-cyclic rotation of rows of
the private/public keys. Due to the quasi-cyclic nature of the
code, it is natural to deposit the first row of each quasi-cyclic
block of the key and to retrieve the other rows by rotating
the first row. For instance, the computation of the public
syndrome s = [Ml|I]eT is performed by extracting the cor-
responding rows of Ml successively and then accumulating
them. In the previous implementations [30], [32], [35], the
first row of the private/public keys was initially stored in
block RAMs and loaded to a large quasi-cyclic shifting array
for rotating it to the correct form. The problem with this
approach is that a single row is still so lengthy that one has
to utilize registers of long bit widths to store and perform
arithmetic on them. This downside considerably increases
usage of the reconfigurable resource, e.g. slice utilization,
and hence these designs cannot be implemented adequately
on some low-end FPGA platforms.

On the other hand, the idea to operate the quasi-cyclic
rotation entirely in block RAMs is proposed in [31] to
overcome the above issue. Unlike loading and processing
one row of long bits at a time, only a small portion of the
row (7 bits in the actual implementations) is quasi-cyclically
shifted and written back to the block RAMs, which permits
to implement a very compact and low power design that
handles every 7 bits at one time (see Fig. 1a). To increase the
memory access efficiency as much as possible, the read first
mode of Xilinx FPGA BRAM is exploited to enable reading
and writing an identical address within the same time
interval.

(a) rotate the public/secret key in bit-by-bit fashion

(b) rotate the public/secret key in digit-by-digit
fashion

Fig. 1: Example of bit-by-bit versus digit-by-digit rotation.
The first address of the memory B[·], i.e., B[0] stores 3 bits
and other addresses store 7 bits.

In this work, we propose an alternative approach that
accelerates the rotation as in [31] while maintaining the
lightweight design feature. This approach is commonly
useful for all quasi-cyclic code-based schemes. We use the
big-endian notation to store the cyclic matrix. For instance,
a cyclic matrix B can be characterized by its first row/ col-
umn vector (b0, b1, . . . , bp−1): then, in such a case, the first
address B[0] stores (bp−1, bp−2, bp−3), the second address
B[1] stores (bp−4, bp−5, . . . , bp−10) and etc. The idea behind
our approach is to use the same memory organization as
in [31] (in other terms, the first row B[·] of a quasi-cyclic
matrix is arranged in RAM using big-endian format), but
rotate multiple bits (called digit) each time. Note that B[·] is
organized in digits, in other terms, each entry of B[·] except
the first one has a digit d = 7 bits, while the first entry has a
fractional digit ∆ = p mod d bits. It is natural to rotate these
entries by digit since this operation is straightforwardly
done by overwriting each entry by the one below it. Fig. 1b
depicts the changes of the first three entries B[0], B[1], B[2]
in the digit-by-digit fashion. Here a digit has 7 bits. Before
rotation, B[0], B[1], B[2] locate at line 0, 1, 2, respectively.
After rotation, B[2] moves to B[1], the least significant 3 bits
of B[1] move to B[0], the original B[0] concatenated with the
most significant 4 bits of B[1] moves to B[6].

For better clarity, we describe the rotation operations for
bit-by-bit and digit-by-digit modes in Algorithms 4 and 5.
We point out that our bit-by-bit version deviates slightly
from [31]. In [31], the first entry B[0] is restricted to 1
bit for ease of cyclic rotation, while our version is not
limited by this restriction. Algorithm 6 describes the faster
multiple-digits rotation mode that appears to be efficient if
the distance between subsequent rotation indices is large. In
this case, it is beneficial to rotate multiple digits each time
to approach the target rotation faster. The price we have
to pay is the control overhead and extra caches to deposit
temporary data: as we show in Algorithm 6, n+1 additional
caches are required to operate the n-digit rotation.

Based on the previously described three rotation modes
(Rot Bit, Rot Digit, Rot MDigit), Algorithms 7, 8 and 9 are
designed to rotate a matrix by a specific number of positions
l. Algorithm 7 describes the basic bit-by-bit rotation using
Rot Bit() l times. Algorithm 8 describes the digit-by-digit

5

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

C1,n0=2 C1,n0=3 C1,n0=4 C3,n0=2 C3,n0=3 C3,n0=4 C5,n0=2 C5,n0=3 C5,n0=4

nu
m

be
r o

f m
em

or
y

ac
ce

ss
es

NIST defined security category

<1> <8> <16> <32> <64> <128> <256>

(a) rotation by single digit (8,16,32,64,128,256-bits)

1.00E+04

1.00E+05

1.00E+06

1.00E+07

C1,n0=2 C1,n0=3 C1,n0=4 C3,n0=2 C3,n0=3 C3,n0=4 C5,n0=2 C5,n0=3 C5,n0=4

nu
m

be
r o

f m
em

or
y

ac
ce

ss
es

NIST defined security category

<32> <32,64> <32,96> <32,128> <32,160> <32,192>

(b) rotation by multiple digits (32-bits)

1.00E+05

1.00E+06

1.00E+07

C1,n0=2 C1,n0=3 C1,n0=4 C3,n0=2 C3,n0=3 C3,n0=4 C5,n0=2 C5,n0=3 C5,n0=4

nu
m

be
r o

f m
em

or
y

ac
ce

ss
es

NIST defined security category

<8> <8,16> <8,24> <8,32> <8,40> <8,48>

(c) rotation by multiple digits (8-bits)

Fig. 2: Performance evaluation on distinct rotation modes
for Mi · eTi

rotation which uses Rot Digit() q times and then switches to
Rot Bit() l′ times. Algorithm 9 describes the multiple digit-
by-digit rotation that first uses Rot MDigit() q1 times and
then switches to Rot Digit() q2 times, and finally to Rot Bit()
l′′ times. It is noteworthy to highlight that if l is smaller than
the digit size d, Algorithms 8 and 9 boil down to Algorithm 7
and thus do not improve the rotation efficiency. In other
words, Algorithms 8 and 9 are only useful if the rotation
step is relatively large (l > d).

We study the optimal digit size d for cyclic rotation in
RAMs in terms of timing efficiency. This parameter is critical
as d determines the data width of an operand (for example,
the data width of block memory, registers, field addition,
etc.) manipulated in hardware. For simplicity, the number
of memory accesses is measured to indicate the timing effi-
ciency. Rot Bit(), Rot Digit() and Rot MDigit() process each

entry B[i] in B[·] and must read and write B[i] at least once.
Consequently, Rot Bit(), Rot Digit() and Rot MDigit() are
all assigned to m = dp/de times of memory accesses. With
this basic assumption, let us consider the cyclic rotation in
key encapsulation shown in step-2, Algorithm 2 as

s = [Ml|I] · eT

= [M0|M1|M2| . . . |Mn0−2|I] · [e0|e1| . . . |en0−2|en0−1]T

=
n0−2∑
i=0

Mie
T
i + eTn0−1

where Mi is a p × p cyclic matrix and ei is a 1 × p sparse
vector. The multiplication of Mi by eTi is equivalent to
the accumulation of cyclic rotations of the first column
of Mi with respect to the non-zero elements in ei. Note
that the average weight of ei is wt(ei) = t/n0 as the
errors are uniformly distributed in the vector e. The total
number of memory accesses for cyclic rotations in Mie

T
i is

estimated heuristically through Montecarlo simulations. In
particular, the digit size d is restricted to the form of 2k as
this form of d eliminates the integer division required in
Rot Digit() and Rot MDigit(), and for each value of d, one
million simulations are run to calculate the average number
of memory accesses. Fig. 2a depicts how the performance
differs given some typical values of d if the basic digit-
level rotation (Alg. 8) is applied to compute Mie

T
i for all

parameters proposed in [36]. We observe that the perfor-
mance improves rapidly when d increases. However, if d
overcomes a particular value, here, d = 32, the performance
gain becomes negligible as d continues to increase. The
performance between the basic and the multiple digit-by-
digit rotation is also compared and a comprehensive set of
experimental results (d = 32 versus (2d, 3d, 4d, 5d, 6d)) is
reported in Fig. 2b. We observe that the multiple digit-by-
digit mode does not always perform well for the LEDAkem
parameter sets. The performance gains for six category 1
and 3 instances are negligible. On the other hand, if the
digit d is set to a small value, for example, < 8, 16 > (first
rotate 16 bits, switch to rotate 8 bits if the remaining offset
is smaller than 16), Algorithm 9 exhibits approximately 50%
memory access reduction, as shown in Fig. 2c. To conclude,
we suggest using the d = 32 basic digit-by-digit mode for
LEDAkem hardware, as this value balances timing perfor-
mance and implementation costs. For extreme cases that
demand area efficiency or power efficiency, we recommend
using the d = 8 multiple digit-by-digit mode.

3.2 Q-decoder

LEDAkem proposes to use an improved bit flipping de-
coder, called Q-decoder, to decode the public syndrome
s′ into the secret error vector e. The Q-decoder allows
recovering e directly thoughH while taking into account the
effect of the multiplication of e byQ. Algorithm 10 describes
the operations performed by the Q-decoder. Note that the
threshold values b(i)(s(i)) are predefined to provide good
decoding performance for the Q-decoder. s(i) is a 1× p row
vector and ê(i) is a 1×n row vector used in the i-th iteration
of the Q-decoder, with initial values s(0) = s′T , ê(0) = 0. The
operand ∗ denotes multiplication performed in the integer
domain Z.

6

TABLE 3: Example of control logic for cyclic rotation in block
RAMs

clk count wea web addra addrb douta doutb cache dina dinb

0 r r m-1 m-2 — — — — —

1 w r m-2 m-3 B[m-1] B[m-2] — douta —

2 w r m-3 m-4 — B[m-3] B[m-2] cache —
...

...
...

...
...

...
m-2 w r 1 0 — B[1] B[2] cache —

m-1 w w 0 m-1 — B[0] B[1] cache&(2r − 1) {doutb,cache >> r}

(a) Timing diagram for Rot Digit
clk count wea web addra addrb douta doutb cache dina dinb

0 r r m-1 m-2 — — — — —

1 w w m-1 m-2 B[m-1] B[m-2] — {douta&(2d−1 − 1),0} {doutb&(2d−1 − 1),douta>> (d− 1)}

2 r r m-3 m-4 — — B[m-2] — —
...

...
...

...
...

...
m-2 w w 2 1 B[2] B[1] B[3] {douta&(2d−1 − 1),cache>> (d− 1)} {doutb&(2d−1 − 1),douta>> (d− 1)}

m-1 r r 0 m-1 — — B[1] — —

m w w 0 m-1 B[0] B[m-1] B[1] {douta&(2r−1 − 1),cache>> (d− 1)} {doutb>> 1,douta>> (r − 1)}

(b) Timing diagram for Rot Bit

Input: the secret key {H,Q} and the syndrome
s′ = HQeT

Output: shared secret e or decoding failure
1 for i← 1 to lmax do
2 Σ(i) = [δ

(i)
1 , δ

(i)
2 , · · · , δ(i)

n] = s(i−1) ∗H
3 R(i) = [ρ

(i)
1 , ρ

(i)
2 , · · · , ρ(i)

n] = Σ(i) ∗Q
4 Define F(i) = {v ∈ [1, n]|ρ(l)

v > b(i)(s(i))}
5 Update ê(i) = ê(i−1) + 1F(i) , where 1F(i) is 1× n

vector with non-zero entries indexed by F(i)

6 Update s(i) = s(i−1) +
∑
v∈F(i) qvH

T , where qv is
the v-th row of QT

7 if wt(s(i)) == 0 then
8 return ê(i)

9 return dec fail
Algorithm 10: LEDAkem Q-decoder [17]

The Q-decoder returns the shared secret e within lmax
iterations. The DFR is extremely low while employing a
significantly smaller number of decoding iterations with
respect to classic bit flipping, if appropriate threshold values
b(1)(s(1)), b(2)(s(2)), . . . , b(imax)(s(imax)) are used. In [17], an
adaptive choice of decision threshold values is proposed, ac-
cording to which b(i)(s(i)) is computed per each iteration as
a function of the syndrome weight wt(s(i)). This approach
can be implemented efficiently by populating a lookup table
with the pairs {wj , bj} listed in sequential order, where
wj denotes the syndrome weight and bj corresponds to
the flipping threshold. During an iteration (i-th iteration
in Algorithm 10), the syndrome weight wt(s(i)) is first
computed, then the largest wj is searched in the look-up
table such that wj < wt(s(i)), and the corresponding bj is
used as the threshold b(i)(s(i)). Table 4 reports the look-up
table values for all the considered parameter sets, which
have been computed according to the algorithm mentioned
in [17, Section 2.4]. The DFR achieved by each one of the con-
sidered instances has been estimated through Montecarlo
simulations based on a Q-decoder using the aforementioned
thresholds. For the Category 1 parameter set with n0 = 2,
we obtained 14 failures over 109 decryption simulations,
pointing to a DFR ≈ 1.16 × 10−8 and for the Category 3

TABLE 4: Q-decoder decision thresholds used in our
LEDAkem design

C1,n0 = 2 C1,n0 = 3 C1,n0 = 4 C2,3,n0 = 2 C2,3,n0 = 3 C2,3,n0 = 4 C4,5,n0 = 2 C4,5,n0 = 3 C4,5,n0 = 4
wj bj wj bj wj bj wj bj wj bj wj bj wj bj wj bj wj bj
0 41 0 43 0 49 0 61 0 64 0 71 0 74 0 86 0 88

2919 42 1089 44 1840 50 4230 62 3954 65 3146 72 5521 75 6369 87 4779 89
4401 43 2212 45 2333 51 7022 63 5039 66 4261 73 9830 76 8307 88 6564 90
5178 44 2717 46 2648 52 8501 64 5663 67 4859 74 12004 77 9436 89 7596 91
5648 45 3003 47 2850 53 9423 65 6070 68 5263 75 13363 78 10162 90 8223 92

3214 48 2978 54 10023 66 6383 69 5568 76 14241 79 10692 91 8707 93
3355 49 10452 67 6602 70 5771 77 14915 80 11113 92 9047 94

10777 68 6773 71 5924 78 15384 81 11419 93 9314 95
6061 79 15770 82 11664 94 9522 96

16069 83 11861 95 9709 97
16300 84

parameter set with n0=2, we obtained 2 failures out of 109

decryptions, pointing to a DFR ≈ 2 × 10−9. We have en-
countered no failures after running 109 decoding instances
for the remaining parameter sets in Category 1/3/5, thus
the DFR can be approximately bounded by the reciprocal of
the number of simulations, i.e., DFR . 10−9.

Resistance to side channel attacks of the Q-decoder
module should be examined. The two most popular side
channel attacks against practical cryptographic implementa-
tions are timing and power analysis attacks. Note that, since
LEDAkem employs ephemeral keys, it provides a natural
resistance against non-profiled power analysis attacks, as a
significant amount of power trace collections with the same
key is mandatory before the key is eventually revealed.
Concerning timing attacks, the current implementation of
the Q-decoder is not characterized by constant-time execu-
tion. However, we observe that for all proposed parameter
sets, the number of iterations made by the Q-decoder is
between 3 and 5, with a significant bias towards 4. It is
simple to thwart the timing analysis if the Q-decoder always
runs for the maximum needed amount of iterations without
sacrificing the desired DFR. In addition, LEDAkem exploits
ephemeral keys, while typical timing attacks are based on
the observation of a large number of decryption instances
performed with the same key. This also suggests that the
LEDAkem is naturally immune to timing attacks.

3.3 Computation in sparse representation

In general, key decapsulation is more complex than key
encapsulation as more matrix multiplications are involved.
Unlike the matrix multiplication s = MeT performed in
key encapsulation, the matrix multiplications used in key
decapsulation, i.e., s′ = Ln0−1s, s(i−1) ∗ H and Σ(i) ∗ Q,
keep the form of a sparse circulant matrix multiplied by a
dense vector. However, our proposed digit-by-digit rotation
is not directly applicable to this specific non-standard form,
since our method requires the standard form in which the
vector is sparse and then fast rotation is possible by indexing
the non-zero entries in the sparse vector.

In this subsection we propose an efficient computation
approach that exploits the extremely sparse representation
of Ln0−1, H,Q to accelerate key decapsulation. First con-
sider s′ = Ln0−1s. define s = [s0, s1, . . . , sp−1]T and

Ln0−1 =


l0 l1 · · · lp−1

lp−1 l0 · · · lp−2

...
...

. . .
...

l1 l2 · · · l0

. Then for each entry

s′i of s′ = [s′0, s
′
1, . . . , s

′
p−1], we apparently have s′i =∑p−1

i=0 l(p−i) mod psi. Define L = {v ∈ [0, p − 1]|lv 6= 0}
and Li as the i-th entry of L, then s′i is reformulated as

7

s′i =
∑mdv−1
j=0 s(Lj+i) mod p. In other terms, the computation

of each s′i is obtained by onlymdv reads of si,i∈L, and a total
of pmdv reads is needed to compute the vector s′. Next con-
sider Σ(i) = s(i−1) ∗H . Define H = {v ∈ [0, p− 1]|hv 6= 0},
then we have δ(i)

i =
∑dv−1
j=0 s(Hj+i) mod p, which implies a

total number of ndv reads needed to compute the vector
Σ(i). Similarly, a total of nm reads is needed for computing
R(i) = Σ(i) ∗Q.

With the above estimation, we can evaluate the timing
performance of key decapsulation, which helps identifying
possible performance bottlenecks. Let #iter, #flip denote the
average number of decoding iteration and the number of bit
flips occurring in each iteration, respectively, then the total
number of memory reads for key decapsulation is:

pmdv + #iter · (ndv + nm+ #flip ·mdv)

The Monte-Carlo simulation used in Section 2.1 is useful to
estimate #iter, #flip. According to our experiments, for all
nine LEDAkem instances we have #iter={3.020, 3.134, 2.973,
3.856, 3.022, 3.014, 3.221, 3.022, 3.012} and #flip={83.070,
49.649, 40.869, 102.426, 81.913, 63.988, 167.859, 111.423,
88.436}. We compare the number of memory accesses, i.e.,
the timing performance between the key encapsulation and
decapsulation. Results are reported in Fig. 3a, from which
we observe some asymmetry in the key decapsulation per-
formance, which drives us to introduce two new accelera-
tion techniques in order to reduce such a performance gap.

3.3.1 Parallelization of block partition
The first technique we use is based on parallel computing
for partitioned blocks. Note that the computation of Σ(i) =
s(i−1) ∗H and R(i) = Σ(i) ∗Q in the Q-decoder essentially
consist of n0 blocks:

s(i−1) ∗H = s(i−1) ∗ [H0|H1| . . . |Hn0−1]

= [s(i−1) ∗H0|s(i−1) ∗H1| . . . |s(i−1) ∗Hn0−1]

Σ(i) ∗Q = [Σ
(i)
0 | . . . |Σ

(i)
n0−1] ∗


Q0,0 · · · Q0,n0−1

Q1,0 · · · Q1,n0−1

...
. . .

...
Qn0−1,0 · · · Qn0−1,n0−1


=

n0−1∑
j=0

Σ
(i)
j ∗Qj,0

∣∣∣∣ · · · ∣∣∣∣ n0−1∑
j=0

Σ
(i)
j ∗Qj,n0−1


If all these blocks can be processed in parallel, a performance
improvement by a factor n0 is achieved. Indeed, if n0 copies
of the vector s(i−1) are allowed, it is obvious to parallelize
all blocks of s(i−1) ∗ H . Furthermore, if the blocks of Q
are carefully scheduled, it is also possible to parallelize all
blocks of Σ(i) ∗ Q. Table 5 lists the detailed schedule to
compute Σ(i) ∗ Q with only one copy of Σ(i) and Q. The
idea is to assign distinct partitions Σ

(i)
j of the vector Σ(i) to

each computation block so that computation for each block
is performed independently from the others and thus one
copy of Σ(i) is sufficient. To summarize, if the parallelized
block computation is applied, then the total number of
memory accesses for key decapsulation is:

pmdv + #iter · (pdv + pm+ #flip ·mdv)

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

C1,n0=2 C1,n0=3 C1,n0=4 C3,n0=2 C3,n0=3 C3,n0=4 C5,n0=2 C5,n0=3 C5,n0=4

decapsulation, total number encapsulation, d=32 for comparison

(a) Performance evaluation for key decapsulation, compared
with key encryption

0.0E+00

5.0E+06

1.0E+07

1.5E+07

C1,n0=2 C1,n0=3 C1,n0=4 C3,n0=2 C3,n0=3 C3,n0=4 C5,n0=2 C5,n0=3 C5,n0=4

nu
m

be
r o

f m
em

or
y

ac
ce

ss
es

NIST defined security category

decapsulation, total number total(only consider block partition)

total (only consider lazy acc., d=32) total (consider both reductions, with d=32)

(b) Performance evaluation for optimized key decapsulation,
compared with original key decapsulation

Fig. 3: Estimated memory accesses for LEDAkem key de-
capsulation

TABLE 5: Parallelization by a factor n0 of R(i) = Σ(i) ∗Q in
the Q-decoder

compute
∑n0−1

j=0 Σ
(i)
j ∗Qj,0 compute

∑n0−1
j=0 Σ

(i)
j ∗Qj,1 · · · compute

∑n0−1
j=0 Σ

(i)
j ∗Qj,n0−1

step 1 Σ0 ∗Q0,0 Σ1 ∗Q0,1 . . . Σn0−1 ∗Q0,n0−1

step 2 Σ1 ∗Q1,0 Σ2 ∗Q1,1 . . . Σ0 ∗Q1,n0−1

...
...

...
...

...
step n0 Σn0−1 ∗Qn0−1,0 Σ0 ∗Q1,1 . . . Σn0−2 ∗Qn0−1,n0−1

3.3.2 Optimization of lazy accumulation
The second technique we propose is called lazy accumula-
tion. Recall the memory structure to store Ln0−1, Σ(i) and
R(i). Multiple bits, or more precisely, d bits of data are stored
at each memory address, thus it is preferable to process d
bits in parallel as the hardware always obtains d bits of data
whenever it accesses the memory.

To be specific, let us first consider a simple example
concerning s′ = Ln0−1s. As discussed earlier in this sub-
section, for a particular entry of s′, let us say the i-th entry
s′i =

∑mdv−1
j=0 s(Lj+i) mod p, the subsequent entry is s′i+1,

s′i+1 =
∑mdv−1
j=0 s(Lj+i+1) mod p. It occurs with probability

1 − 1/d that s(Lj+i) mod p and s(Lj+i+1) mod p reside in the
same address, and therefore s′i and s′i+1 can be computed
in parallel without additional memory accesses. Table 6 lists
the detailed schedule to compute s′i and s′i+1 in parallel. In
step 1, one reads the memory once and gets s(L0+i) mod p

and s(L0+i+1) mod p. In step 2, one reads the memory again
and gets s(L1+i) mod p and s(L1+i+1) mod p to accumulate

8

(a) Extract the target d bits from 2d bits
of s, and then align the d bits

(b) Extract the target bd/dlog2(dv)ec
digits from 2d bits of s(i−1), and then
align the bd/dlog2(dv)ec bits

(c) Extract the target bd/dlog2(dv)ec
digits from 2bd/dlog2(dv)ec digits of
Σ(i), and then align the bd/dlog2(dv)ec
digits

Fig. 4: Lazy accumulation to compute multiple bits of s′ = Ln0−1s, s
(i−1) ∗H,Σ(i) ∗Q

TABLE 6: Parallelization to compute 2 bits of s′ = Ln0−1s
by lazy accumulation

step 1 step 2 · · · step mdv
compute s′i s(L0+i) mod p s(L1+i) mod p . . . s(Lmdv−1+i) mod p

compute s′i+1 s(L0+i+1) mod p s(L1+i+1) mod p . . . s(Lmdv−1+i+1) mod p

TABLE 7: Optimized shift value l in lazy accumulation for
s′ = Ln0−1s

let d = 8 let d = 32 let d = 64
l=1 l=2 l = 4 l=1 l=2 l=4 l = 8 l=16 l=1 l=2 l=4 l = 8 l=16 l=32

shift number 4.50 2.50 2.25 16.51 8.50 5.25 5.12 8.05 32.48 16.50 9.25 7.12 9.07 16.03
ρs = d

shift number 3.56 6.25 8.99

respectively, and finally in step mdv , one computes s′i and
s′i+1. Indeed, if one reads two memory addresses at once
by using dual-port RAM, in other words, if one gets 2d bits
of s, he can always compute d bits of s′ in parallel. It is
convenient to compute d bits of s′ since s′ is also organized
to have d bits at one memory addresses. An illustrative
example of the computation of d bits of s′ is shown in Fig 4a.
Assume that in this example we have obtained 2d bits of s
in two d-bit registers. The beginning index of the target d
bits of s stored in memory is i ∈ (0, 1, . . . , d − 1). Then the
ending index should be i+ d− 1. The target d bits must be
aligned right from i to i′ such that accumulation only occurs
in the last d bits of the register. To achieve this alignment
with better efficiency, in other terms, to shift to i′ = d from
position i, we propose to use two-layered shift registers
similarly to Alg. 8, where a shift by l bits is performed first,
with l > 1, and a one-bit shift is performed then. Note that
the index i is uniformly distributed since the secret key H is
generated from a uniform PRNG, the shift value i′−i is also
uniform in (1, 2, . . . , d). We run simulations for d = 8, 32, 64
to determine the value of l such that the total shift number is
minimized. The results are collected in Table 7. To evaluate
the performance improvement introduced by lazy accumu-
lation, we compute the acceleration ratio as ρs = d

shift number .
This ratio measures the average number of bits from s we
can generate per shift.

Next consider Σ(i) = s(i−1) ∗ H . Note that every entry
δ

(i)
j of the vector Σ(i) is dlog2(dv)e bits long and this

means one memory address stores at most bd/dlog2(dv)ec
digits (or equivalently, dlog2(dv)ebd/dlog2(dv)ec bits) for
Σ(i) if we impose that d bits of data are stored at each

TABLE 8: Optimized shift value l in lazy accumulation for
Σ(i) = s(i−1) ∗H

d′ = b 8
dlog2(dv)e c d′ = b 32

dlog2(dv)e c d′ = b 64
dlog2(dv)e c

d′ = f2k (b 8
dlog2(dv)e c) d′ = f2k (b 32

dlog2(dv)e c) d′ = f2k (b 64
dlog2(dv)e c)

l=1 l=2 l = 4 l=1 l=2 l=4 l = 8 l=16 l=1 l=2 l=4 l = 8 l=16 l=32

shift number 4.50 2.50 2.25 16.50 8.50 5.25 5.12 8.06 32.50 16.50 9.25 7.13 9.06 16.04
4.50 2.50 2.25 16.50 8.50 5.25 5.12 8.06 32.50 16.50 9.25 7.13 9.06 16.04

ρΣ = d′

shift number
3.56 6.25 8.97
3.56 6.25 8.97

TABLE 9: Optimized shift value l in lazy accumulation for
R(i) = Σ(i) ∗Q

d′′ = b 8
dlog2(mdv)e c d′′ = b 32

dlog2(mdv)e c d′′ = b 64
dlog2(mdv)e c

d′′ = f
2k

(b 8
dlog2(mdv)e c) d′′ = f

2k
(b 32
dlog2(mdv)e c) d′′ = f

2k
(b 64
dlog2(mdv)e c)

l=1 l=2 l = 4 l=8 l=1 l=2 l=4 l = 8 l=16
C1, n0 = 2, 3, 4 1 8.50 4.50 3.25 4.12 15.50 8.00 5.00 5.00 8.00
C3, n0 = 2 1 8.50 4.50 3.25 4.12 16.50 8.50 5.25 5.12 8.05
C3, n0 = 3, 4 1 8.50 4.50 3.25 4.12 16.50 8.50 5.25 5.12 8.05
C5, n0 = 2, 3, 4 1 8.50 4.50 3.25 4.12 16.50 8.50 5.25 5.12 8.05

ρR = d′′
shift number

1 1.23, 1.23 1.8, 1.56
1 1.23, 1.23 1.56, 1.56

memory address. Lazy accumulation attempts to extract
the desired bd/dlog2(dv)ec digits from the total 2d bits
of data, as shown in Fig. 4b. Note that this time, we
aim to align right to the second register by shifting to
i′ = 2d − dlog2(dv)ebd/dlog2(dv)ec from position i ∈
(0, 1, . . . , d − 1). In other terms, the shift value i′ − i
is uniform in (d − dlog2(dv)ebd/dlog2(dv)ec + 1, . . . , 2d −
dlog2(dv)ebd/dlog2(dv)ec). Simulations are run to determine
the best values of l, which are reported in Table 8. Note
that in an actual implementation, dlog2(dv)ebd/dlog2(dv)ec
is not always in the form of 2k, and thus it is advisable to
truncate this number to the nearest power of two using the
function f2k(). Therefore, in odd and even rows of Table 8
we list two sets of data, the former is based on the maximum
allowed d′ = dlog2(dv)ebd/dlog2(dv)ec, the latter is based
on the truncated d′ = f2k(dlog2(dv)ebd/dlog2(dv)ec). Let us
define the acceleration ratio ρΣ = d′

shift number . For all values
of d′, we observe that ρΣ > 1, which indicates that some
improvement is achieved by using lazy accumulation.

Finally, let us considerR(i) = Σ(i)∗Q. Every entry ρ(i)
j of

the vector R(i) consists of dlog2(mdv)e bits and this means
one memory address stores at most d′′ = bd′/dlog2(mdv)ec
digits for R(i). Lazy accumulation attempts to extract the
desired d′ bits from the total 2d′ bits of data, as shown in
Fig. 4c. In Table 9, the shift number is grouped into two
sets: [(C1), (C3, n0 = 2)] and [(C3, n0 = 3, 4), (C5)], and
the acceleration ratio ρR = bd/dlog2(mdv)ec

shift number is always greater

9

Fig. 5: Generic architecture of key encapsulation engine

than 1, except for d = 8, and thus lazy accumulation is
mostly advantageous in this case.

To summarize, lazy accumulation is applicable to s′ =
Ln0−1s, Σ(i) = s(i−1) ∗ H , and R(i) = Σ(i) ∗ Q with accel-
eration factor ρs, ρΣ, ρR, respectively. In other terms, after
the optimization of lazy accumulation, the total number of
memory accesses is estimated as:

pmdv/ρs + #iter · (ndv/ρΣ + nm/ρR + #flip ·mdv)

Fig. 3b compares the timing performance with and with-
out acceleration for d = 32. It is seen that the proposed
acceleration techniques help improving the performance of
key decapsulation by at least four times, and this result
even outperforms that of key encapsulation. Note that this
comparison is based on a rough estimation that does not
consider the timing overhead of memory read/write for
intermediate variables and control logic transition. We will
present a precise timing estimation for these optimizations
in the next section. Moreover, lazy accumulation introduces
significantly better acceleration ratio than parallelized block
partition without increasing the memory or routing over-
head. For parameter sets with small n0, i.e., C1,3,5 with
n0 = 2, we suggest using lazy accumulation only; for other
parameters, we suggest using both techniques for high-
speed applications on high-end FPGAs while using lazy
accumulation only for low-end FPGAs.

4 PROPOSED LIGHTWEIGHT ARCHITECTURES FOR
KEY ENCAPSULATION AT 128-BIT SECURITY LEVEL

This section describes the proposed key encapsulation and
decapsulation engine for the 128-bit security level C1 with
n0 = 2, p = 14939, t = 136. These architectures comply
with the techniques proposed in the previous section. We
implement the architecture for the 128-bit security level
(Category 1, n0 = 2 in Table 1) as a case study, which is
easily extensible to higher security levels.

4.1 Key encapsulation engine

Our key encapsulation engine performs the computations
shown in Algorithm 2. In particular, the technique we pro-
pose to rotate QC-LDPC codes in block RAMs is deployed
in this design. Fig. 5 provides an overview of the key
encapsulation engine. The shared secret e is stored in the
form of t non-zero indices to save memory. The generation

Fig. 6: Generic architecture of key decapsulation engine

of the ciphertext is split into two stages. In the first stage,
the second half e1 of the shared secret e is generated and
accumulated to the ciphertext s stored in Syndrome BRAM.
e1 is sparse with average weight t/2 and thus we write only
the non-zero bits to Syndrome BRAM. Note that s stored
in Syndrome BRAM is organized in digits, we instantiate a
shift register with initial value 0x0001 to flip the specific bit
position in s. Only t/2 bit flips are required before e1 is fully
accumulated to s.

The second stage manipulates the cyclic rotation of the
public key H stored in PubKey BRAM according to Al-
gorithm 8 and then accumulates the results to Syndrome
BRAM. Let B[·] denote the data stored in PubKey BRAM
with m = dp/de entries. True dual-port RAM is exploited
to enable Rot Digit() and Rot Bit() which owns two inde-
pendent sets of reading/writing ports, i.e., port A (wea,
addra, dina, douta) and port B (web, addrb, dinb, doutb).
In general, Rot Digit() takes m clock cycles and Rot Bit()
takes m+ 1 cycles. A detailed description for implementing
Rot Bit() and Rot Digit() on hardware is provided in Ta-
ble 3. This operation takes one clock cycle delay and a cache
register is used to deposit doutb for one more clock cycle to
correctly write the rotated data to dina or dinb.

4.2 Key decapsulation engine

Our key encapsulation engine performs the computations
corresponding to Algorithm 3 and Algorithm 10. The top
level architecture is depicted in Fig. 6. Unlike the key
encapsulation engine, the sparse form of secret keys, i.e.,
indices of non-zero bits of L1, H

T = [HT
0 |HT

1], Q =
[QT0 |QT1], LT = [LT0 |LT1] are stored in RAMs. The ciphertext
input is stored in RAM s and the final shared secret output
is stored in RAM e. Critical computing components that in-
clude CMP s′, CMP Σ, CMP R, and FLIP execute the logic
transition peculiarly designed for the Q-decoder (Alg. 10),
shown in Fig. 7a.

CMP s′ computes s′ = Ln0−1s only once in the key
decapsulation. Then the decapsulation engine iteratively
behaves as the Q-decoder: CMP Σ computes Σ(i) = s(i) ∗H
and CMP R computes R(i) = Σ(i) ∗ Q. Eventually, the
FLIP block flips the bit positions of the shared secret e
and updates the syndrome s(i) according to the thresholds
reported in Table. 4.

10

(a) top layer control logic
transition

(b) logic transition to
compute s′ = L1 · s

(c) logic transition to
update s′ via bit flip-
ping

Fig. 7: Typical finite-state machines used in the key decap-
sulation engine

(a) Internal Structure of CMP s′

(b) Internal Structure of FLIP

Fig. 8: Critical computing components used in the key
decapsulation engine

As illustrated in Section 3.3, the lazy accumulation

TABLE 10: Timing diagram for CMP L1 to compute d bits
of s′ = Ln0−1s

READ L1 READ S SHIFT 8bit+SHIFT 1bit WRITE S’ READ S EXP
cycle counts 1 1+1 #shift+1 1 1

Fig. 9: read s exp that occurs when the first line of s is
loaded

technique is applied to CMP s′, CMP Σ, and CMP R for
enhancing the timing performance. The detail of s′ = L1s
is depicted in Fig. 8a. As dual-port RAM is instantiated, we
are able to load two successive data of s in one clock cycle
to register ld dat. Two-layer rotating module shifts ld dat
fast such that the lower half of ld dat includes the target d
bits of s according to the values of L1. Note that we only
store the indices of the non-zero entries in the first row of
L1 and these values are added by d in each round (added
by ∆ in the last round), where d bits of s′ are computed.
The timing diagram for CMP L1, which follows the logic
transition in Fig. 7b, is reported in Table 10. This diagram
repeats dpmdv/de times and thus the total cycle count for
CMP s′ is estimated as follows:

dpmdv/de · (#shift + 5) + dp/de+mdv

The additional dp/de represents the cycle count of
writing s′ back to RAM (WRITE S’), and mdv represents
the extra cycle count needed for the state READ S EXP.
READ S EXP occurs when the first line of s is read out to
ld dat. Two cases may occur in READ S EXP to guarantee
that 2d bits of valid data are always available in ld dat, as
shown in Fig. 9. In the first case, Σ bits and d bits from
S[0] and S[m-1] are loaded, and then in the next cycle, the
remaining d − Σ bits are loaded from S[m-2]. In the second
one, d bits and Σ bits from S[1] and S[0] are loaded, and then
in the next cycle, the remaining d − Σ bits are loaded from
S[m-1]. In the case of C1, n0 = 2, the average number of
shifts is 5.12 according to Table 7 with the system parameters
p = 14939,m = 7, dv = 11, d = 32, and thus the exact cycle
count is (14939∗7∗11∗ (5.12+5)+14939)/32 ≈ 3.64∗105.

Likewise, the cycle count for CMP Σ is estimated as

dn0pdv/de · (#shift + 5) + 8n0dp/de

Note that CMP Σ computes d = 32 bits of Σ each
time but writes the data back to RAM Σ[·] using
d/f2k(bd/dlog2dvec) = 8 clock cycles, which contributes the
extra term 8n0dp/de. In the case of C1, n0 = 2, #shift=5.12
and thus the total count is 2∗14939∗(11∗(5.12+5)+8)/32 ≈
1.11 ∗ 105.

11

TABLE 11: Timing diagram for FLIP to update one bit of e

READ Ltr READ S’ SHIFT 8bit+SHIFT 1bit WRITE S’
cycle counts 1 1 #shift+1 1

TABLE 12: Implementation results of our LEDAkem en-
gines on a Xilinx Virtex-6 XC6VLX240T FPGA and a Xilinx
Spartan-6 XC6SLX75L FPGA after the place and route pro-
cess.

Aspect Key Encapsulation Engine Key Decapsulation Engine
Virtex-6 Spartan-6 Virtex-6 Spartan-6

FFs 53 62 658 660
LUTs 104 110 2222 2181
Slices 33 39 870 809
BRAM 1 1 13 17
DSPs 0 0 0 0
Frequency 235 MHz 140 MHz 140 MHz 85 MHz
Time/Op 2.9 ms 4.9 ms 16.1 ms 26.6 ms
Compute e1 ≈ 1144 cycles —
Compute HeT0 ≈ 6.81× 105 cycles —
Compute s′ — 3.64× 105 cycles
Compute Σ(i) — 1.11× 105 cycles
Compute R(i) — 4.61× 105 cycles
Update s′ — 5.76× 104 cycles
Overall 6.82× 105 cycles 2.26× 106 cycles

The cycle count for CMP R is estimated as:

dn0pm/de · (#shift + 5) + 4n0dp/de

Note that CMP R calculates f2k(bd/dlog2mdvec) = 4 digits
of R each time but selects the valid ones by scanning these
digits one by one. This operation costs the extra 4n0dp/de
cycles. In the case of C1, n0 = 2, #shift=3.25, d=4 and thus
the total count is 2∗14939∗(7∗(3.25+5)+4)/4 ≈ 4.61∗105.

The FLIP component operates in a different mode other
than CMP s′, CMP Σ, and CMP R do. As shown in Fig. 7c
and 8b, FLIP only updates one bit of the shared secret e
according to the value in the vector R in one round of logic
transition. A very limited number of positions in R is above
the flip threshold, which are stored in the FIFO. For each
valid value ri in FIFO, the ri-th row of LT is extracted and
then summed to s′. Meanwhile, the Hamming weight of s′ is
updated on-the-fly by a simple AND of the register one and
the previous value of s′ (s’ din). The critical timing diagram
is shown in Table 11, which describes the basic operation
of extracting one entry in LT and then summing to update
one bit of s′(e). This timing diagram repeats for #flip ·mdv
times, which is equivalent to updating ê(i) = ê(i−1) + 1F(i)

and s(i) = s(i−1)+
∑
v∈F(i) qvH

T , as shown in Algorithm 10.
Thus, the cycle count for FLIP is computed as

#flip ·mdv · (#shift + 4) + #flip

The additional #flip represents the number of FIFO reads.
In the case of C1, n0 = 2, #shift=5, #flip=83.07 and thus the
total count is 83.07 ∗ (7 ∗ 11 ∗ (5 + 4) + 1) ≈ 5.76 ∗ 104.

To sum up, the total cycle count for key decapsulation is
computed as:

CMP s′ + #iter · (CMP Σ(i) + CMP R(i) + FLIP)

In the case of C1, n0 = 2, this number equals 2.26 ∗ 106.

5 FPGA IMPLEMENTATION RESULTS AND COM-
PARISON

In this section, we present our lightweight QC-LDPC KEM
implementation results in FPGA. All the results are obtained

TABLE 13: Performance comparison of our lightweight
FPGA implementations of LEDAkem with other code-based
cryptographic hardware.

Scheme SL
[bit] Platform f [MHz] Time/Op Cycles FFs LUTs Slices BRAM

LDPC code:
Ours (encap.) 128 Xilinx Virtex-6 235 2.9ms 6.82× 105 53 104 33 1
Ours (decap.) 140 16.1ms 2.26× 106 658 2,222 870 13
MDPC code:
[19] (encap.)

128 Xilinx Artix-7
162.6 39.9ms 6.5× 106 103 366 125 2

[19] (encap, opt. lv1) 161.3 20.5ms 3.3× 106 100 518 190 3
[19] (encap, opt. lv2) 151.5 10.6ms 1.6× 106 89 668 213 3
[31] (enc.) 80 Xilinx Virtex-6 334 2.2 ms 7.4× 105 119 226 64 1
[31] (dec.) 318 13.4 ms 4.3× 106 412 568 148 1
[32] (enc.) 80 Xilinx Virtex-6 400 3.86µs 1,542 10,031 9,886 3,371 2
[32] (dec.) 310 65.76µs 20,384 37,789 24,688 8,781 0
[30] (enc.) 80 Xilinx Virtex-6 351.3 13.66µs 4,800 14,426 8,856 2,920 0
[30] (dec.) 222.5 125.38µs 27,897 32,974 36,554 10,271 0

Goppa code:
[29] (enc.)

103 Xilinx Virtex-5 180
10µs 1498

— — 6,660 68[29] (dec.) 30µs 5864
[29] (kgen.) 8.35ms 1,503,927
[37] (enc.)

128 Xilinx Artix-7 38.1
71µs 2720

49,383 25,327 — 68[37] (dec.) 410µs 15,638
[37] (kgen.) 42ms 1,599,882
[25] (enc.)

103 Xilinx Virtex-5 163
0.50ms 81,500

— — 14,537 75[25] (dec.) 1.29ms 210,300
[25] (kgen.) 90 ms 14,670,000
[38] (dec.) 128 Xilinx Virtex-6 162 0.18ms 28,887 — — 3,307 15

post place-and-route for a Xilinx high-end FPGA device —
Virtex XC6VLX240T and a low-end FPGA device — Spartan
XC6SLX16 FPGA using Xilinx ISE 14.7, which demonstrate
the compactness of our design on both platforms. In contrast
to this work, the prior KEM implementations [25], [29], [30],
[32], [38] cannot fit into low-end FPGAs including Spartan-
6. As shown in Table 12, our key encapsulation engine on
the Virtex-6 device runs at 235 MHz and generates one
ciphertext in 6.82 × 105 cycles, that is 2.9 ms of operation
time. It runs on the Spartan-6 device at 140 MHz and
generates one ciphertext in 4.9 ms. The area footprint is ex-
tremely low (33 slices and 39 slices on Virtex-6 and Spartan-
6 respectively) as our proposed digit-level QC rotation is
entirely executed through memory read and write, which
consumes few hardware resources.

On the other hand, our key decapsulation engine runs
at 140 MHz and 85 MHz on the Virtex-6 and Spartan-6
device respectively, and decapsulates the shared secret in
approximately 2.26 × 106 cycles. This cycle count is equiv-
alent to 16.1 ms and 26.6 ms of operating time for Virtex-
6 and Spartan-6, respectively. It is noteworthy to mention
that the timing performance of decapsulation is comparable
to that of encapsulation, though the operations done in
decapsulation include decoding, which is the most complex
operation. Such a performance gap is narrowed because
the proposed lazy accumulation parallelizes the decapsula-
tion algorithm. Nevertheless, lazy accumulation introduces
more complicated logic control and registers, two-layered
rotation, and accumulation. The slice usage (870 and 809)
reflects this architectural characteristic. The secret key size
is also much larger than the public key, together with some
ephemeral variables s′ and Σ which lead to denser memory
consumption: 13 and 17 block RAMs used in Virtex-6 and
Spartan-6, respectively.

In the following, we compare our work with other code-
based schemes on FPGAs as shown in Table 13. First, we
compare with the MDPC code-based schemes that also
exploit the quasi-cyclic structure of the codes. Very recently,
the BIKE team included some hardware implementation
results concerning data encapsulation and key generation
in the specification document [19]. A comparison with those
data shows that at the same security level of 128 bits, our
LEDAkem encapsulation engine runs significantly faster
and also uses less slice and memory footprint than the BIKE

12

encapsulation engine does, while our decapsulation engine
performs almost at the same level as the BIKE decapsulation
does in terms of cycle counts and operation time. The
lightweight design from [31] is currently the smallest design
based on MDPC codes. However, this design utilizes system
parameters for 80-bit security, which below the target posed
by NIST for the standardization of post-quantum cryptosys-
tems. Another drawback of the solution proposed in [31] is
the high DFR (≈ 0.00506, see [30]). The DFR is a significant
performance metric and we believe such a high value is
impractical for real deployment. Our design achieves 128-bit
security with comparable timing and area consumption, but
DFR around 10−8. Moreover, our key encapsulation engine
achieves even smaller costs in regard to area and memory
consumption. The high-speed design of an MDPC code-
based system (actually a primitive version of BIKE) in [30],
[32] yields a considerable increase in hardware resources in
order to perform fast encryption/decryption. Moreover, it is
difficult to scale such an approach to higher security levels
with larger key size. The reason is that these designs load
and operate the entire key in the register. It is bearable for
parameters at 80-bit security level as the public key is a few
thousand bits long, but the design performance deteriorates
significantly if a higher security level (with typical key
sizes of tens of thousands of bits) is considered. Conversely,
our methodology maintains the lightweight characteristic
for 128-bit security and even higher. Higher security levels
only increase the memory consumption of our design since
the same arithmetic/logic core is simply iteratively invoked
more times in our design.

Second, we compare our work with another popular
scheme based on Goppa codes [25], [29], [37], [38]. As a
reference implementation, we consider the one reported
in [29], where scalability is tested with different system
parameters and FPGA platforms. We extract from [29] the
experimental results for 103-bit security on a Xilinx FPGA
to provide a direct and fair comparison. It is seen that for
almost the same security level, Goppa code-based systems
require much more memory to store the public/secret key
and the arithmetic core that handles Goppa polynomials is
also notably complex. Despite this area and memory uti-
lization, Goppa code-based schemes exhibit a scalable and
stable timing performance over all NIST security categories.
Conversely, our work provides a scalable lightweight design
that can be deployed on low-end FPGAs with extremely
limited computing resources.

6 CONCLUSION

This paper presented a lightweight hardware design for
a post-quantum key encapsulation mechanism based on
LDPC codes, called LEDAkem, which is a second-round
candidate to the NIST post-quantum cryptography stan-
dardization process. Digit-level cyclic rotation was pro-
posed to accelerate key encapsulation with negligible logic
overhead. Lazy accumulation and block partition tech-
niques have also been proposed to optimize the computa-
tions needed for performing key decapsulation. The meth-
ods above are generic and applicable to other code-based
schemes, on condition that the underlying codes are quasi-
cyclic.

ACKNOWLEDGEMENT

This work was partially supported by Singapore Ministry of
Education under Research Grant MOE2016-T2-2-014(S) and
the National Research Foundation, Prime Ministers Office,
Singapore under its Strategic Capability Research Centres
Funding Initiative.

REFERENCES

[1] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and
D. Smith-Tone, “Report on post-quantum cryptography,” National
Institute of Standards and Technology Internal Report, vol. 8105, 2016.

[2] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,” SIAM journal
on computing, vol. 26, no. 5, pp. 1484–1509, 1997.

[3] R. J. McEliece, “A public-key cryptosystem based on algebraic
coding theory,” DSN progress report, vol. 42, no. 44, pp. 114–116,
1978.

[4] V. D. Goppa, “A new class of linear correcting codes,” Problemy
Peredachi Informatsii, vol. 6, no. 3, pp. 24–30, 1970.

[5] H. Niederreiter, “Knapsack-type cryptosystems and algebraic cod-
ing theory,” Problems Of Control and Information Theory-Problemy
Upravleniya I Thorii Informatsii, vol. 15, no. 2, pp. 159–166, 1986.

[6] Y. X. Li, R. H. Deng, and X. M. Wang, “On the equivalence of
McEliece’s and Niederreiter’s public-key cryptosystems,” IEEE
Transactions on Information Theory, vol. 40, no. 1, pp. 271–273, 1994.

[7] C. Monico, J. Rosenthal, and A. Shokrollahi, “Using low density
parity check codes in the McEliece cryptosystem,” in Information
Theory, 2000. Proceedings. IEEE International Symposium on. IEEE,
2000, p. 215.

[8] A. Otmani, J.-P. Tillich, and L. Dallot, “Cryptanalysis of two
McEliece cryptosystems based on quasi-cyclic codes,” Mathematics
in Computer Science, vol. 3, no. 2, pp. 129–140, 2010.

[9] R. Misoczki and P. S. Barreto, “Compact McEliece keys from
Goppa codes,” in International Workshop on Selected Areas in Cryp-
tography. Springer, 2009, pp. 376–392.

[10] C. Löndahl and T. Johansson, “A new version of McEliece PKC
based on convolutional codes,” in International Conference on Infor-
mation and Communications Security. Springer, 2012, pp. 461–470.

[11] M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, and D. Schipani,
“Enhanced public key security for the McEliece cryptosystem,”
Journal of Cryptology, vol. 29, no. 1, pp. 1–27, 2016.

[12] P. Loidreau, “A new rank metric codes based encryption scheme,”
in International Workshop on Post-Quantum Cryptography. Springer,
2017, pp. 3–17.

[13] P. Gaborit, A. Otmani, and H. T. Kalachi, “Polynomial-time key
recovery attack on the Faure–Loidreau scheme based on Gabidulin
codes,” Designs, Codes and Cryptography, vol. 86, no. 7, pp. 1391–
1403, 2018.

[14] M. Baldi, M. Bianchi, and F. Chiaraluce, “Optimization of the
parity-check matrix density in QC-LDPC code-based McEliece
cryptosystems,” in Communications Workshops (ICC), 2013 IEEE
International Conference on. IEEE, 2013, pp. 707–711.

[15] M. Baldi, M. Bodrato, and F. Chiaraluce, “A new analysis of the
Mceliece cryptosystem based on QC-LDPC codes,” in Security and
Cryptography for Networks. Springer, 2008, pp. 246–262.

[16] R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. Barreto, “MDPC-
McEliece: New McEliece variants from moderate density parity-
check codes,” in IEEE International Symposium on Information The-
ory Proceedings (ISIT), 2013. IEEE, 2013, pp. 2069–2073.

[17] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini,
“LEDAkem: a post-quantum key encapsulation mechanism based
on QC-LDPC codes,” in International Conference on Post-Quantum
Cryptography. Springer, 2018, pp. 3–24.

[18] P. S. Barreto, S. Gueron, T. Gueneysu, R. Misoczki, E. Persichetti,
N. Sendrier, and J.-P. Tillich, “Cake: code-based algorithm for key
encapsulation,” in IMA International Conference on Cryptography and
Coding. Springer, 2017, pp. 207–226.

[19] N. Aragon, P. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C.
Deneuville, P. Gaborit, S. Gueron, T. Guneysu, C. A. Melchor et al.,
“Bike: Bit flipping key encapsulation,” 2019.

[20] T. Fabšič, V. Hromada, P. Stankovski, P. Zajac, Q. Guo, and T. Jo-
hansson, “A reaction attack on the QC-LDPC McEliece cryptosys-
tem,” in International Workshop on Post-Quantum Cryptography.
Springer, 2017, pp. 51–68.

13

[21] Q. Guo, T. Johansson, and P. Stankovski, “A key recovery attack on
MDPC with CCA security using decoding errors,” in International
Conference on the Theory and Application of Cryptology and Informa-
tion Security. Springer, 2016, pp. 789–815.

[22] P. Santini, M. Battaglioni, F. Chiaraluce, and M. Baldi, “Analysis
of reaction and timing attacks against cryptosystems based on
sparse parity-check codes,” in Code-Based Cryptography, M. Baldi,
E. Persichetti, and P. Santini, Eds. Cham: Springer International
Publishing, 2019, pp. 115–136.

[23] A. Nilsson, T. Johansson, and P. S. Wagner, “Error amplification
in code-based cryptography,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 238–258, 2019.

[24] T. Eisenbarth, T. Güneysu, S. Heyse, and C. Paar, “Microeliece:
McEliece for embedded devices,” in Cryptographic Hardware and
Embedded Systems-CHES 2009. Springer, 2009, pp. 49–64.

[25] A. Shoufan, T. Wink, H. G. Molter, S. A. Huss, and E. Kohnert,
“A novel cryptoprocessor architecture for the McEliece public-key
cryptosystem,” Computers, IEEE Transactions on, vol. 59, no. 11, pp.
1533–1546, 2010.

[26] S. Ghosh, J. Delvaux, L. Uhsadel, and I. Verbauwhede, “A speed
area optimized embedded co-processor for McEliece cryptosys-
tem,” in Application-Specific Systems, Architectures and Processors
(ASAP), 2012 IEEE 23rd International Conference on. IEEE, 2012,
pp. 102–108.

[27] S. Heyse and T. Güneysu, “Towards one cycle per bit asym-
metric encryption: code-based cryptography on reconfigurable
hardware,” in Cryptographic Hardware and Embedded Systems–CHES
2012. Springer, 2012, pp. 340–355.

[28] W. Wang, J. Szefer, and R. Niederhagen, “FPGA-based key genera-
tor for the Niederreiter cryptosystem using binary Goppa codes,”
in International Conference on Cryptographic Hardware and Embedded
Systems. Springer, 2017, pp. 253–274.

[29] ——, “FPGA-based Niederreiter cryptosystem using binary
Goppa codes,” in International Conference on Post-Quantum Cryp-
tography. Springer, 2018, pp. 77–98.

[30] S. Heyse, I. Von Maurich, and T. Güneysu, “Smaller keys for
code-based cryptography: QC-MDPC McEliece implementations
on embedded devices,” in Cryptographic Hardware and Embedded
Systems–CHES 2013. Springer, 2013, pp. 273–292.

[31] I. von Maurich and T. Güneysu, “Lightweight code-based cryp-
tography: QC-MDPC McEliece encryption on reconfigurable de-
vices,” in Proceedings of the conference on Design, Automation & Test
in Europe. European Design and Automation Association, 2014,
p. 38.

[32] J. Hu and R. C. Cheung, “Area-time efficient computation of
Niederreiter encryption on QC-MDPC codes for embedded hard-
ware,” IEEE Transactions on Computers, 2017.

[33] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini,
“LEDAcrypt: Low-density parity-check code-based cryptographic
systems,” March 2019. [Online]. Available: https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions

[34] “Post-Quantum Cryptography Standardization.” computer
security research center, NIST, 2017. [Online]. Available:
https://csrc.nist.gov/projects/post-quantum-cryptography

[35] J. Hu and R. C. Cheung, “Toward practical code-based signature:
Implementing fast and compact QC-LDGM signature scheme on
embedded hardware,” IEEE Transactions on Circuits and Systems I:
Regular Papers, 2017.

[36] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini, “De-
sign of LEDAkem and LEDApkc instances with tight parameters
and bounded decryption failure rate.”

[37] D. J. Bernstein, T. Chou, T. Lange, R. Misoczki, R. Niederha-
gen, E. Persichetti, P. Schwabe, J. Szefer, and W. Wang, “Classic
McEliece: conservative code-based cryptography,” 2019.

[38] P. M. C. Massolino, P. S. Barreto, and W. V. Ruggiero, “Optimized
and scalable co-processor for McEliece with binary Goppa codes,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 14,
no. 3, p. 45, 2015.

Jingwei Hu received the BSc degree in elec-
tronic engineering from Dalian Maritime Uni-
versity, Dalian, in 2011, and the MEng de-
gree in computer engineering from Tianjin Uni-
versity, Tianjin, in 2014, and the PhD degree
in electronic engineering from City University
of Hong Kong, Hong Kong, in 2018. He is
currently a postdoctoral research fellow in the
School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore.
His research interest includes embedded cryp-

tographic system, lightweight cryptographic hardware and side channel
security.

Marco Baldi received the Laurea degree
(Hons.) in electronic engineering and the Ph.D.
degree in electronic, computer and telecommu-
nications engineering from the Università Po-
litecnica delle Marche, Ancona, Italy, in 2003 and
2006, respectively. Since 2016, he has been a
tenure-track Assistant Professor with the same
university. He has co-authored over 150 scien-
tific papers, one book, and three patents. His
research is focused on coding and cryptogra-
phy for information security and reliability. He

received the Italian National Scientific Habilitation (ASN) as an Asso-
ciate Professor of telecommunications engineering in 2017. He currently
serves as an Associate Editor for IEEE Communications Letters, the
EURASIP Journal on Wireless Communications and Networking, and
MDPI Information.

Paolo Santini received the Master degree
(Hons.) in Electronic Engineering from the Uni-
versità Politecnica delle Marche, Ancona, Italy,
in 2016, respectively. Since 2016, he has been
a PhD student with the same university. His re-
search is focused on coding theory, security and
cryptography.

Neng Zeng currently is a Ph. D student (since
2016) in Division of Mathematical Sciences,
School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore.
Her research is focused on coding theory and
code-based cryptography.

San Ling received the B.A. degree in mathe-
matics from the University of Cambridge and
the Ph.D. degree in mathematics from the Uni-
versity of California, Berkeley. He is currently
President’s Chair in Mathematical Sciences, at
the Division of Mathematical Sciences, School of
Physical and Mathematical Sciences, Nanyang
Technological University, Singapore, which he
joined in April 2005. Prior to that, he was with the
Department of Mathematics, National University
of Singapore. His research fields include: arith-

metic of modular curves and application of number theory to combina-
torial designs, coding theory, cryptography and sequences.

Huaxiong Wang received a PhD in Mathemat-
ics from University of Haifa, Israel in 1996 and
a PhD in Computer Science from University of
Wollongong, Australia in 2001. He is currently
an Associate Professor and the Deputy Direc-
tor of Strategic Centre for Research in Privacy-
Preserving Technologies & Systems (SCRIPTS)
at Nanyang Technological University in Singa-
pore. He has more than 20 year experience of
research in cryptography and information secu-
rity.

