In this paper, we propose a framework that aims at handling metrics among strings defined over heterogeneous alphabets. Furthermore, we illustrate in detail its application to generalize one of the most important string metrics, namely the edit distance. This last activity leads us to define the Multi-Parameterized Edit Distance (MPED). As for this last metric, we investigate its computational properties and solution algorithms, and we present several experiments for its evaluation. As a final contribution, we provide several notes about some possible applications of MPED and other generalized metrics in different scenarios.
Generalizing identity-based string comparison metrics: Framework and Techniques / Cauteruccio, F.; Terracina, G.; Ursino, D.. - In: KNOWLEDGE-BASED SYSTEMS. - ISSN 0950-7051. - 187:(2020). [10.1016/j.knosys.2019.06.028]
Generalizing identity-based string comparison metrics: Framework and Techniques
D. Ursino
2020-01-01
Abstract
In this paper, we propose a framework that aims at handling metrics among strings defined over heterogeneous alphabets. Furthermore, we illustrate in detail its application to generalize one of the most important string metrics, namely the edit distance. This last activity leads us to define the Multi-Parameterized Edit Distance (MPED). As for this last metric, we investigate its computational properties and solution algorithms, and we present several experiments for its evaluation. As a final contribution, we provide several notes about some possible applications of MPED and other generalized metrics in different scenarios.File | Dimensione | Formato | |
---|---|---|---|
versione pubblicata.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
KBS-MPED.pdf
Open Access dal 29/06/2021
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Creative commons
Dimensione
808.7 kB
Formato
Adobe PDF
|
808.7 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.