In this paper, we propose a framework that aims at handling metrics among strings defined over heterogeneous alphabets. Furthermore, we illustrate in detail its application to generalize one of the most important string metrics, namely the edit distance. This last activity leads us to define the Multi-Parameterized Edit Distance (MPED). As for this last metric, we investigate its computational properties and solution algorithms, and we present several experiments for its evaluation. As a final contribution, we provide several notes about some possible applications of MPED and other generalized metrics in different scenarios.

Generalizing identity-based string comparison metrics: Framework and Techniques / Cauteruccio, F.; Terracina, G.; Ursino, D.. - In: KNOWLEDGE-BASED SYSTEMS. - ISSN 0950-7051. - 187:(2020). [10.1016/j.knosys.2019.06.028]

Generalizing identity-based string comparison metrics: Framework and Techniques

D. Ursino
2020-01-01

Abstract

In this paper, we propose a framework that aims at handling metrics among strings defined over heterogeneous alphabets. Furthermore, we illustrate in detail its application to generalize one of the most important string metrics, namely the edit distance. This last activity leads us to define the Multi-Parameterized Edit Distance (MPED). As for this last metric, we investigate its computational properties and solution algorithms, and we present several experiments for its evaluation. As a final contribution, we provide several notes about some possible applications of MPED and other generalized metrics in different scenarios.
2020
File in questo prodotto:
File Dimensione Formato  
versione pubblicata.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
KBS-MPED.pdf

Open Access dal 29/06/2021

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Creative commons
Dimensione 808.7 kB
Formato Adobe PDF
808.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/267661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 17
social impact