
26 August 2024

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

Generalizing identity-based string comparison metrics: Framework and Techniques / Cauteruccio, F.;
Terracina, G.; Ursino, D.. - In: KNOWLEDGE-BASED SYSTEMS. - ISSN 0950-7051. - 187:(2020).
[10.1016/j.knosys.2019.06.028]

Original

Generalizing identity-based string comparison metrics: Framework and Techniques

Publisher:

Published
DOI:10.1016/j.knosys.2019.06.028

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/267661 since: 2024-05-07T12:30:09Z

This is the peer reviewd version of the followng article:

note finali coverpage

Generalizing identity-based string comparison metrics: Framework

and Techniques

Francesco Cauteruccio1, Giorgio Terracina1, and Domenico Ursino2

1 DEMACS, University of Calabria,
2DII, Polytechnic University of Marche

{cauteruccio,terracina}@mat.unical.it, d.ursino@univpm.it

Abstract

In this paper, we propose a framework that aims at handling metrics among strings defined

over heterogeneous alphabets. Furthermore, we illustrate in detail its application to generalize

one of the most important string metrics, namely the edit distance. This last activity leads us

to define the Multi-Parameterized Edit Distance (MPED). As for this last metric, we investigate

its computational properties and solution algorithms, and we present several experiments for its

evaluation. As a final contribution, we provide several notes about some possible applications of

MPED and other generalized metrics in different scenarios.

Keywords: String Metrics, Generalized String Similarity Framework, Matching Schema, Gener-

alized Metric Function, Multi-Parameterized Edit Distance

1 Introduction

Ordered sequences of symbols (also called strings) play an important role in computer science. In-

deed, with the support of an adequate semantics, they can be used to express several kinds of data.

Data provided as streams of strings are constantly increasing; think, for instance, of sensor networks,

wearable devices, distributed agents, sequences of events, etc. Interactions among such data streams,

and consequently among the corresponding string representations, arise some intriguing questions, like

How much two strings are correlated?, or How (dis)similar are they?.

Several techniques for string comparison have been proposed in past literature. Basically, a measure

of (dis)similarity between strings is a function that takes two strings s1 and s2 as input and returns a

value d, representing the level of (dis)similarity of s1 and s2 based on some metric.

String metrics may significantly differ for the rules adopted to measure the (dis)similarity degree;

in their turn, these rules depend on the context in which they are applied [17]. However, most

of the available metrics are based on the natural assumption that identical symbols among strings

represent identical information, whereas different symbols introduce, in a way or another, some form

of differentiation.

This assumption, even if generally valid, could fail in some circumstances. For instance, consider

two strings s1 = AAABCD and s2 = 111234; any standard metric would state that they are completely

1

DOI: https://doi.org/10.1016/j.knosys.2019.06.028

different. Nevertheless, there are cases (like the one shown above) in which symbol identity seems to

be not enough. In fact, even if there are no common symbols between two strings, it could happen

that they represent similar information to some extent.

What happens if we strongly believe that there is some underlying matching between two strings

that apparently have different symbols but similar structures? As an example, consider two strings

s1 and s2 and assume that they are generated by heterogeneous data streams, derived from two

different ways of measuring the same reality; think, for instance, of two sensors one measuring light

and the other measuring temperature. The values, the scales and the meaning of the two sensors

may be very different but, if sensors are near to a fire, light can be influenced by temperature,

and vice versa. To properly monitor this event, we should be able to understand the correlation

between these two heterogeneous measurements. As a further example, suppose that s1 and s2 have

been deliberately manipulated in such a way as to appear dissimilar (for instance, using code cloning

techniques) [30, 43, 24], even if their meaning is actually identical.

In these cases, the necessity arises of a suitable metric capable of capturing hidden correlations

between strings. This metric should take into account that different symbols in the involved strings

may express similar concepts.

A step forward in this context, in particular for code cloning detection, has been carried out with

the introduction of parameterized strings, i.e., strings which have some symbols acting as parameters

that can be substituted at no cost. In this setting, a seminal approach has been presented in [6], and

some variants and extensions of the metric introduced therein have been proposed in past literature

[4, 7, 28, 31]. Among these extensions, the ones using injective and bijective mapping functions are

extremely important in our context. In fact, there are many application scenarios where one-to-one

mappings do not sufficiently express concept similarities among heterogeneous strings (see Section 2

for more details). In spite of the interesting ideas underlying all the approaches mentioned above, they

suffer from an important limitation in that they are tailored to specific problems (e.g., code cloning

detection) or to specific metrics.

This paper aims at taking a further step forward in this direction. Indeed, it presents a framework

that generalizes most of the existing string metrics, making them suitable for application scenarios

where involved strings could be based on heterogeneous alphabets. In this way, our approach makes the

adoption of string metrics possible in all those contexts in which involved strings come from different

sources, each using its own alphabet.

The main components of the proposed framework are: (i) a matching schema, which formalizes

matches between symbols, and (ii) a generalized metric function, which abstracts the computation

of string metrics based on a pre-defined matching schema. The proposed framework is based on the

identification of the best matching schema for the metric function, i.e., the matching schema leading

to the minimum value of the distance function when applied to the strings into consideration.

To better illustrate the behavior and the contribution of our framework, we describe its application

to the generalization of one of the most important string metrics, namely edit distance. As for this

issue, we provide both a theoretical study of the computational costs related to such generalization

and solution techniques for its implementation.

Just to provide an example of the potential of our approach, given the strings s1 = AAABCCDDCAA

and s2 = EEFGHGGFHH, any classical method would state that they are completely different. By

2

contrast, our generalization of the edit distance would find that, by matching the pair of symbols

{A,B} with the pair {E,H} and the pair {C,D} with the pair {F,G}, the following alignment is possible:

s1 : AAABCCDDCAA→ AAABCCDDCAA

s2 : EEFGHGGFHH → -EEFGHGGFHH

** * *****

which states that the second string could be obtained from the first one with just 3 (parameterized)

edit operations, thus finding a significant, not obvious, correlation between the two strings (see Section

4 for all details).

A preliminary version of the generalized edit distance has been formerly introduced in [11]. In this

paper, we significantly extend that work by providing the following new contributions:

• We provide a formalization of the framework.

• We formally prove that it generalizes most of the existing string metrics, making them suitable

for application scenarios where involved strings could be based on heterogeneous alphabets.

• As for the generalization of the edit distance (which we call Multi-Parameterized Edit Distance -

MPED), we provide a detailed description of its theoretical implications; in particular, we prove

that its computation is NP-Hard.

• Based on the previous result, we introduce the definition of an efficiently computable lower

bound for MPED.

• We investigate several implementations of MPED, based on heuristic approaches.

• We extensively test all the presented implementations, we compare their performances and we

investigate the strengths and the weaknesses of each of them.

• We describe three application scenarios that can benefit from MPED.

The rest of this paper is organized as follows. Section 2 reviews related literature. Section 3

introduces the proposed framework and an overview of its application to generalize some of the most

important metrics for string comparison already proposed in the past. Section 4 is devoted to study

in all detail MPED, which represents the generalization of the edit distance obtained by applying

the proposed framework. In the same section, we also provide the computational properties and

some solution algorithms for MPED. The experimental evaluation of MPED is discussed in Section 5.

Section 6 provides some notes about three possible applications of the proposed generalized metric.

Finally, in Section 7, we draw our conclusions and highlight some future directions of our research

efforts.

3

2 Related work

String similarity computation has been a challenging issue in past literature, and several attempts

to face this problem have been presented. However, most of the literature generalizing classical

approaches with parameterized alphabets focuses on the pattern matching problem [6], whose objective

is to seek (exact or approximate) occurrences of a given pattern in a text. This is the context in which

parameterized strings were introduced. Here, some of the symbols act as parameters that can be

properly substituted at no cost.

A seminal work on this topic is presented in [6]. The approach described in this paper compares

parameterized strings. It considers bijective global transformation functions allowing exact p-matches

only. This means that the two strings could match only if they have the same length; thus, no

substitutions or insertions are possible.

Mismatches are allowed in [28], where the authors face the problem of finding all the locations in a

string s in which there exists a global bijection π that maps a pattern p into the appropriate substring

of s minimizing the Hamming distance. In this case, injective functions, instead of bijective ones, are

considered in [4].

String matching has been extensively used for clone detection, i.e., to check if a code contains

two or more cloned parts. In [30], a token-based code clone detection approach is presented. Here,

matches between strings are carried out by using a suffix-tree algorithm. The code is tokenized by

one parameter only; thus, a match is represented by a one-to-many mapping.

In [3], the authors introduce the concept of generalized function matching applied to the pattern

matching problem in several contexts, like image searching, DNA analysis, poetry and music analysis,

etc.

A detailed survey on parameterized matching appears in [37].

Moving towards string similarity computation, a relevant research issue regards the longest common

subsequence problem (hereafter, LCS) and its parameterized versions. In particular, in [31], the

parameterized version of the LCS problem is considered. Interestingly, LCS allows only insertions and

deletions, but no substitutions.

String similarity metrics present important overlap with approximate pattern matching, since

one can determine the distance between two strings by asking whether there exists an approximate

pattern matching with at most k mismatches. However, having a direct approach for measuring the

parameterized distance provides obvious benefits.

Few works consider the problem of parameterized distances between strings. In [7], the notion

of p-edit distance is introduced. It focuses on the edit distance, where allowed edit operations are

insertions, deletions and exact p-matches. Mismatches are not allowed. Furthermore, two substrings

that participate in two distinct exact p-matches are independent of each other, so that mappings have

local validity over substrings not broken by insertions and deletions. In particular, within each of these

substrings, the associated mapping function must be bijective. The work presented in [31] extends the

approach proposed in [7] by requiring that the transformation function has a global validity; however,

it still limits the set of allowed edit operations (in particular, substitutions are not allowed).

The work in [22] is based on the approach proposed in [6]; it introduces an order-preserving

match, but it limits the number of mismatches to k. In [27], a preliminary approach to a many-

4

to-many mapping function for string alignment can be found; it computes alignments between two

parameterized strings and gives preference to alignments based on the co-occurrence frequency.

Finally, there are a high number of applications in which string similarity computation plays a key

role. In [41], a biology-inspired data mining framework for extracting patterns in sexual cyberbullying

data is defined; this topic has received much attention in the latest years. This framework is based

on the multiple sequence alignment method and aims at recognizing bullying patterns within the

questions posed by a predator to his victims. In [48], instead, a pattern recognition system that

detects malware on a mobile operating system, based on the analysis of suspicious boot sequences,

is developed. This system uses sequence alignment for assessing similarity between legitimate and

malicious system call sequences, in such a way as to discriminate sequences belonging to a malware

from the ones concerning a normal process. Different techniques used in the context of time series

similarity analysis stem from the string similarity ones. For example, in [44], an empirical evaluation

of similarity measures for time series classification is presented. This approach leverages measures

such as dynamic time warping and edit distance for real sequences.

3 A framework for handling generalized string metrics

As we pointed out in the Introduction, the key components of the proposed framework are matching

schemas, which generalize symbol identity to symbol match, and generalized metric functions, which

substitute symbol identity with the symbol matches allowed by the matching schemas at hand. Given

two input strings s1 and s2, a set M of valid matching schemas (see below) and a generalized metric

function fM (·, ·), our framework aims at computing the minimum value for fM (s1, s2) which can be

obtained by any matching schema M in M.

Our framework can be formally defined by a tuple:

F = 〈Π1,Π2, π1, π2, χ, f
M (·, ·)〉

where:

• Π1 and Π2 are the alphabets on which the strings under consideration are defined.

• π1, π2 and χ are parameters that determine the shape of all valid matching schemas.

• fM (·, ·) is a generalized metric function.

In particular, for each pair of symbols in Π1 and Π2, a matching schema M states whether they

match or not. π1 (resp., π2) determines how many symbols of Π1 (resp., Π2) can have a symbol match

with one symbol of Π2 (resp., Π1). Conversely, χ states the pairs of symbols from Π1 and Π2 that

can never have a symbol match in a valid matching schema. Valid matching schemas are also not

ambiguous in determining the mutual matchings between the symbols in Π1 and Π2; in particular, if

a ∈ Π1 matches with b ∈ Π2, then also b matches with a. Given Π1, Π2, π1, π2, and χ, the set of all

valid matching schemas is represented by M.

An intuitive example of a valid matching schema is graphically depicted in Figure 1 for Π1 =

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}, Π2 = {b1, b2, b3, b4, b5, b6, b7, b8, b9}, π1 = 3 and π2 = 2. Black

5

Figure 1: Example of a matching schema for π1 = 3 and π2 = 2

cells indicate matches, whereas white cells represent mismatches. In particular, in this example, a1

matches with both b1 and b2; analogously, b2 matches with both a1, a2, and a3; more generally, the

set of symbols {a1, a2, a3} match with the set of symbols {b1, b2}. Observe that, in this case, matching

schemas fully generalize the concept of symbol identity, since the two alphabets are completely disjoint.

The formal definition of the concept of matching schema can be found in [11].

When applied on two strings s1 and s2 over the alphabets Π1 and Π2, respectively, F returns the

minimum value of fM (s1, s2) that can be obtained by taking any matching schema M of M.

Observe that, in the construction of F, having defined Π1, Π2, π1, π2, and χ implies that also the

set M of all the valid matching schemas is implicitly defined.

In what follows, the length of a string si (i ∈ {1, 2}), i.e., the number of its symbols, will be denoted

by len(si). Moreover, for each position 1 ≤ j ≤ len(si), the j-th symbol of si will be identified by si[j]

and the substring of si starting at position x and ending at position y will be denoted as si[x..y].

3.1 Generalization of notable string similarity metrics

In the previous section, we illustrated our framework F, which paves the way to quite a general

computation of string (dis)similarity.

In this section, we show that F is general enough to encompass several classical and notable string

similarity metrics. First of all, we show that a particular specialization of F includes both character-

based and token-based distances; then, we show that F can be also specialized to more sophisticated

comparison approaches, like the parameterized pattern matching proposed in [6].

Proposition 3.1 Given the following specialization of F:

1. π1 = π2 = 1;

2. χ = {(ci, cj)|ci ∈ Π1, cj ∈ Π2, ci 6= cj};

then, fM (·, ·) = f(·, ·) for all the metric functions f(·, ·) based on symbol identity. �

6

Intuitively, with π1 = π2 = 1, the cardinality of each matching subset is equal to 1, and this con-

straints to one-to-one symbol matchings. With the provided construction of χ, only symbol identities

are allowed. As a consequence, only one matching schema M is valid, namely the one stating that,

for each pair of symbols α ∈ Π1 and β ∈ Π2 , there is a match between α and β if and only if α = β.

This matching simulates symbol identity specification for the generalized metric functions based

on symbol identity.

Edit Distance In its simplest form, the edit distance between two strings s1 and s2 is the minimum

number of edit operations (insertions, deletions or substitutions) performed on single characters needed

to transform s1 into s2, where each operation has a cost equal to 1 [34, 40]. This version of the edit

distance is also referred to as Levenshtein distance. Some variants of the edit distance allow for

arbitrary edit costs; these versions are particularly useful, for instance, in bioinformatics.

A basic algorithm for edit distance computation exploits a dynamic programming approach; in it,

the choice of the edit operation is carried out by a recurrence formula, where the discriminating factor

is based on the question “Is s1[i] = s2[j]?”. If our framework F is applied, this question is substituted

by the following one: “According to M , do the symbols s1[i] and s2[j] match?”. As specified by

Proposition 3.1, according to the specialization defined therein, this question is equivalent to asking

for symbol identity.

It is worth pointing out that edit distance should not be confused with sequence alignment scores

based on substitution matrices (e.g., the alignment algorithms using PAM or BLOSUM substitution

matrices). In fact, even if these approaches are based on a similar dynamic programming backbone,

they rely on a substitution coefficient defined for every pair of symbols. As a consequence, the basic

question is no longer “Is s1[i] = s2[j]?”, but rather “how much would it cost to substitute s1[i] with

s2[j]?”. Actually, in this case, our framework cannot be applied.

Affine Gap Distance The affine gap distance metric [50] is similar to the edit distance, except

for the fact that it introduces two extra edit operations, i.e., open gap and extend gap. In this way,

the cost of the first insertion (gap opening) can be different from, and is usually higher than, the one

of adding consecutive insertions (gap extensions). Similarly to the edit distance, the discriminating

factor in computing the affine gap distance is based on the question “Is s1[i] = s2[j]?”. When applying

our framework F with the specialization introduced in Proposition 3.1, this question is substituted

by the one “According to M , do the symbols s1[i] and s2[j] match?”, which has been shown to be

equivalent to asking for symbol identity.

Smith-Waterman Distance The Smith-Waterman distance [46] is an extension of both the edit

distance and the affine gap distance, in which mismatches at the beginning and at the end of strings

have lower costs than mismatches in the middle. This metric allows for substring matchings and is well

suited for fitting shorter strings into longer ones. Also in this case, the basic resolution schema exploits

dynamic programming, where the discriminating factor in the recurrence formula is the question “Is

s1[i] = s2[j]?”.

7

Jaro Distance Metric The Jaro distance metric, introduced in [29], is based on the concepts of

common characters and transpositions. Given two strings s1 and s2, two symbols s1[i] and s2[j] are

common characters when s1[i] = s2[j] and |i − j| ≤ 1
2 min{len(s1), len(s2)}. Given the i-th common

character a in s1 and the i-th common character b in s2, if a 6= b this is a transposition.

The Jaro distance value is, then, computed as:

Jaro(s1, s2) =
1

3

(
c

len(s1)
+

c

len(s2)
+
c− 1

2 t

c

)

where c is the number of common characters and t is the number of transpositions.

The characteristics of the Jaro distance clearly differ from the ones of the aforementioned metrics.

However, as a common core for the definitions of common character and transposition, there is, again,

symbol equality, where the discriminating question is “Is s1[i] = s2[j]?”.

Also in this case, it is easy to show that substituting this question with the one “According to M ,

do the symbols s1[i] and s2[j] match?”, under the specialization of Proposition 3.1, makes the two

settings equivalent.

Atomic Strings In atomic strings, the comparison shifts away from single character to longer

strings. In particular, s1 and s2 are tokenized by punctuation characters. Each token is called atomic

string. Two atomic strings match if they are equal or if one is a prefix of the other. The similarity

between s1 and s2 is, then, computed as the fraction of the atomic strings that match.

Observe that, even if this metrics moves from the comparison of single characters to the one of

substrings, the basic operation used to identify a matching for atomic strings is the identity of sequences

of single characters. As a consequence, the same considerations outlined above when substituting the

question “Is s1[i] = s2[j]?” with the one “According to M , do the symbols s1[i] and s2[j] match?”

are still valid.

WHIRL In [15], the cosine similarity is combined with the tf.idf weighting scheme to obtain the

WHIRL system aiming at comparing pairs of strings in a set of records. In particular, each string s is

separated into words; a weight vs(w) is assigned to each word w of s; vs(w) depends on the number tfw
of times when w appears in s and on the fraction idfw of records containing w. The cosine similarity

between two strings s1 and s2 is, then, defined as:

sim(s1, s2) =
Σwvs1(w) · vs2(w)

||vs1 ||2 · ||vs2 ||2
Despite the complexity of this metric, as for its application to our context, the most relevant thing to

observe is that both the tfw and the idfw components are based on the exact occurrence of w in the

string(s). As a consequence, again, when asking whether a word w is contained into a string s, the

basic question for the computation is “Is w[i] = s[j]?”, which, as previously shown, can be simulated

by the question “According to M , do the symbols w[i] and s[j] match?”, under the specialization of

Proposition 3.1.

8

Q-grams with tf.idf Q-grams with tf.idf [26] extends the metric adopted in WHIRL by using

q-grams, instead of words. This allows the management of spelling errors, as well as the insertion

and the deletion of words. The computation setting is equal to the one of WHIRL; therefore, all the

considerations about the specialization of F seen for WHIRL can be applied also to this metrics.

Parameterized pattern matching In [6], an approach to compare strings over partially overlap-

ping alphabets is proposed. This approach, called parameterized pattern matching, aims at identifying

pairs of strings being equal except for a one-to-one symbol substitution. In particular, the alphabet

of each string si is partitioned in two alphabets, namely Σi and Πi; the former contains standard

symbols and the latter encompasses parameters. These last can be renamed at no cost. Two such

strings identify a parameterized match if one of them can be obtained by renaming the parameters of

the other by means of a one-to-one function. This approach has been shown to be particularly useful

in code cloning identification.

Our framework can be specialized to accommodate parameterized pattern matching. In fact,

given two strings s1 and s2, defined over the alphabets Σ1 ∪ Π1 and Σ2 ∪ Π2, respectively, consider

the following specialization of F:

1. π1 = π2 = 1;

2. χ = {(ci, cj)|ci ∈ Σ1, cj ∈ Σ2, ci 6= cj}1

Let f(·, ·) be the Hamming distance (which, basically, is the edit distance allowing symbol substi-

tutions only). If the minimum fM (s1, s2) = 0, then there is a parameterized matching between s1 and

s2.

In particular, π1 = π2 = 1 limits to one-to-one functions. The definition of χ states that the only

valid match configuration between pairs of symbols in Σ1 and Σ2 is symbol identity, whereas any

symbol in Π1 (resp., in Π2) can be matched at no cost with any symbol of the other string by means

of a one-to-one matching function. F finds the minimum value of the Hamming distance, among all

the possible one-to-one substitutions. A value of this distance equal to 0 denotes that one string

can be obtained by renaming the parameters of the other by means of a one-to-one function and,

consequently, that a parameterized match holds.

4 Customizing our framework to edit distance

In the previous section, we introduced our framework F for generalizing string metrics. We also showed

that F is general enough to accommodate the classical definitions of well known string metrics. In this

section, we show how it can also be applied to generalize a classic metric, namely the edit distance, in

such a way that symbol identity is substituted by many-to-many symbol correlations, where identifying

the best matching schema is part of the problem. We call MPED (Multi-Parameterized Edit Distance)

the new generalized metric. A preliminary formal definition of MPED has been previously introduced

in [11]; here, we provide it as a specialization of our framework. Furthermore, we provide a detailed

1Observe that, while in Proposition 3.1 we consider the whole alphabet, here we are specifying only Σ1 and Σ2.

9

description of the theoretical implications of MPED by focusing on its computational complexity,

and we introduce the definition of an efficiently computable lower bound. Finally, we introduce

different implementations of MPED, along with a thorough experimental evaluation comparing their

performances.

If we specialize our framework F to MPED we obtain:

FL = 〈Π1,Π2, π1, π2, χ,LM (·, ·)〉

LM (·, ·) is the generalized version of L(·, ·) that takes the parameters π1, π2, and χ into account.

L(·, ·) is the classical edit distance.

In the following, we use L〈π1,π2,χ〉(s1, s2) to denote the minimum value of LM (s1, s2) computed for

FL among all valid matching schemas, according to π1, π2, and χ.

Recall that the edit distance is based on the concept of minimum cost alignment of two strings,

where edit operations are substitutions, insertions, and deletions (also known as indels), and each edit

operation has a cost. In our context, a substitution occurs when two symbols do not match, according

to M . The interested reader is referred to [34, 40] for all the details about the classical methods for

the computation of the edit distance, which, due to space constraints, are not reported here.

The exact value of L〈π1,π2,χ〉(s1, s2) may be computed by means of a brute force approach, which

we call EX in the following. This approach explores all the possible valid matching schemas and

determines the one that returns the lowest edit distance. Obviously, EX is unfeasible for large values

of |Π1|, |Π2|, π1 and π2.

Example 4.1 Let s1 = AAABCCDDCAA and s2 = EEFGHGGFHH, and let Π1 = {A,B,C,D} and Π2 =

{E,F,G,H}. For π1 = π2 = 1, the best alignment 〈s̄1, s̄2〉, which can be computed by EX, is obtained

by matching {A} with {E}, {B} with {G}, {C} with {H}, and {D} with {F}. This alignment is2:

s1 : AAABCCDDCAA→ AAABCCDDCAA

s2 : EEFGHGGFHH → EEFGHGGFH-H

** ** **

It returns L〈π1,π2,χ〉(s1, s2) = 5. Observe that this approach works properly even if Π1 ∩ Π2 = ∅
and the input strings have different lengths.

If we set π1 = π2 = 2, the best alignment, which can be computed by EX, is the one obtained by

matching {A,B} with {E,H}, and {C,D} with {F,G}, namely:

s1 : AAABCCDDCAA→ AAABCCDDCAA

s2 : EEFGHGGFHH → -EEFGHGGFHH

** * *****

It returns L〈π1,π2,χ〉(s1, s2) = 3.

2Here and in the following, we use the standard notation for representing string alignments (see [34, 40]).

10

Suppose, now, to introduce the constraint χ = {(A, E)}. For π1 = π2 = 1, the best alignment

〈s̄1, s̄2〉 computed by EX is the following:

s1 : AAABCCDDCAA→ AAABC-CDDCAA

s2 : EEFGHGGFHH → --EEFGHGGFHH

** *****

It still returns L〈π1,π2,χ〉(s1, s2) = 5; however, in this case, A and E do not match anymore. Optimal

matchings are, in fact, {A} with {H}, {B} with {E}, {C} with {F}, and {D} with {G}. �

4.1 Computational issues

After having defined FL, it is important to analyze its properties. We start by determining its com-

putational complexity. The specialization of F provided in Proposition 3.1 ensures that, in that case,

there exists only one valid matching schema in M, and this can be easily derived by construction.

However, in general, M could contain several matching schemas; each of them could match π1 symbols

of Π1 with π2 symbols of Π2; furthermore, for each matching schema, several alignments between s1

and s2 are possible.

In the following, we show that the general problem of computing MPED is NP-Hard.

Theorem 4.1 The problem of computing L〈π1,π2,χ〉(s1, s2) is NP-Hard.

Proof.

This theorem can be proven by performing a reduction from the three-dimensional matching prob-

lem (hereafter, 3DM) [20]. First recall that 3DM is defined as follows:

Let X, Y and Z be finite and disjoint sets, and let M be a subset of X × Y × Z. Therefore,

M consists of triples 〈Xi, Yi, Zi〉 such that Xi ∈ X, Yi ∈ Y , and Zi ∈ Z. Now, M ′ ⊆ M

is a 3DM if, for any two distinct triples 〈X1, Y1, Z1〉 ∈ M ′ and 〈X2, Y2, Z2〉 ∈ M ′, we have

X1 6= X2, Y1 6= Y2, and Z1 6= Z2.

The decision problem is, then, stated as follows: given a set M and an integer k, decide whether

there exists a 3DM M ′ ⊆M such that |M ′| ≥ k.

Let us, now, turn to the reduction. Let Mi indicate the i-th triple in M and let q = |M |. Let

Π1 = X ∪ Y ∪ Z ∪Σ and Π2 = {Mi} ∪Σ, where the pairs (Xi,Mj) (resp., (Yi,Mj), (Zi,Mj)) are not

constrained, i.e., any of them can possibly match.

For each triple Mi, Σ contains the set of symbols {ci1 . . . ciq , ti1 . . . ti7 , mi1 . . .mi7}. The set of

constraints χ is constructed in such a way as to allow symbol identity only among the symbols in

{ci1 . . . ciq , ti1 . . . ti7 ,mi1 . . .mi7}.
Then, starting from M , we build the following strings:

s1 = Φ1 c11 c12 · · · c1q Φ2 c21 c22 · · · c2q · · · Φq cq1 cq2 · · · cqq

s2 = Ψ1 c11 c12 · · · c1q Ψ2 c21 c22 · · · c2q · · · Ψq cq1 cq2 · · · cqq

11

where, for each triple Mi, the “blocks” Φi and Ψi have the form:

ti1 Xi ti2 ti3 ti4 Yi ti5 ti6 ti7 Zi

Mi mi1 mi2 Mi mi3 mi4 mi5 Mi mi6 mi7

To clarify this construction, consider the setM = {〈X1, Y2, Z2〉, 〈X2, Y1, Z1〉, 〈X3, Y2, Z3〉, 〈X3, Y3, Z4〉}.
The first triple generates the following portions of strings:

s1 = t11 X1 t12 t13 t14 Y2 t15 t16 t17 Z2 c11 c12 c13 c14 · · ·

s2 = M1 m11 m12 M1 m13 m14 m15 M1 m16 m17 c11 c12 c13 c14 · · ·

Observe that, without any edit operation on s1 and s2, the ci1 · · · ciq blocks match, whereas all

the other ones (each consisting of 10 symbols) do not match. As a consequence, without any edit

operation, the distance between the two strings is d = 10 · q. For instance, in the previous example,

the initial distance is d = 40.

Assume, now, that we are interested in computing L〈π1,π2,χ〉(s1, s2), when π1 = 1 and π2 = 3. In

other words, assume that each parameter in s1 can match with at most one parameter in s2 (this

corresponds to say that each Xi (resp., Yi, Zi) can be selected in at most one triple), whereas each

parameter in s2 can match with up to 3 parameters in s1 (this is needed to accommodate the triple

〈Xi, Yi, Zi〉 in Mi).

First we focus on the alignment of the blocks Φi and Ψi. It is easy to see that, if these blocks are

considered in isolation, the only way to reduce their edit distance is to assign both Xi, Yi, and Zi to

Mi in the matching schema and align them as follows:

ti1 Xi ti2 ti3 ti4 Yi ti5 ti6 ti7 Zi − −

− Mi mi1 mi2 − Mi mi3 mi4 mi5 Mi mi6 mi7

In this case, the distance between these two blocks becomes 9. It is easy to check that, if at least

one among Xi, Yi, and Zi is not associated with Mi in the matching schema, or a different alignment

among blocks is carried out, the obtained distance is greater than or equal to 10. As a consequence,

the corresponding choice is not convenient on the global perspective of finding the minimum edit

distance.

Now, observe that the role of the blocks ci1 · · · ciq is exactly to isolate the Φi-Ψi blocks; in fact, it

is easy to verify that it will be never convenient to perform insertions or deletions within these blocks,

because these operations would increase the overall distance.

In conclusion, L〈π1,π2,χ〉(s1, s2) is obtained in correspondence of the matching schema that selects

the maximum number of disjoint triples. The number of these triples can be determined by the

decrease of the initial distance; indeed, each selected triple implies that distance decreases by 1. As

a consequence, given a set M such that |M | = q, and an integer k, deciding whether there exists a

3DM M ′ ⊆M such that |M ′| ≥ k corresponds to checking whether L〈π1,π2,χ〉(s1, s2) ≤ 10 · q− k, with

π1 = 1 and π2 = 3. This implies that 3DM can be reduced to the computation of L〈π1,π2,χ〉(s1, s2)

over all valid matching schemas and, therefore, that this last task is NP-Hard. �

12

4.2 A lower bound L for L〈π1,π2,χ〉(s1, s2)

The intractability of the problem of computing L〈π1,π2,χ〉(s1, s2) points out the need of heuristic

approaches for its solution. In this context, it is highly useful to establish a lower bound L for

d∗ = L〈π1,π2,χ〉(s1, s2) that could be computed in polynomial time; indeed, L could be used to evaluate

the quality of the results returned by heuristic approaches.

First, we start with the definition of a lower bound L for d∗ when π1 = 1 and π2 = 1; then, we

generalize it to any value of π1 and π2. We point out that the computation of L is not a trivial task

even for the case when π1 = 1 and π2 = 1; in fact, a straightforward lower bound could be easily set

to 0, but a useful value for L should approximate d∗ as much as possible.

Given two strings s1 and s2 over Π1 and Π2, respectively, our goal is to characterize d∗ as precisely

as possible by estimating the role, in the computation of d∗, of each pair of symbols (a, b) such that

a ∈ Π1 and b ∈ Π2, without the need of computing the optimal matching schema preliminarily.

Unfortunately, the role played by each pair (a, b) is not independent of the matchings of the other

pairs of symbols included in the optimal matching schema. In particular, it is not possible to compute

the exact role played by (a, b) without preliminarily fixing the whole matching schema.

As a consequence, our aim is to estimate d∗ based on an estimation of the maximum number of

potential matchings between pairs of symbols, given a maximum number of insertions and deletions

(indels, in the following) performed on s1 or s2.

To simplify our presentation, in the following, we first assume that |Π1| = |Π2| = |Π| and len(s1) =

len(s2) = l; then, we extend the definition to the general case.

In order to describe our approach for the computation of L, we observe that d∗ could be written

as:

d∗ = l + δ∗ − µ∗

where δ∗ is the number of indels present in the optimal alignment 〈s̄1, s̄2〉, and µ∗ is the number of

matches present in 〈s̄1, s̄2〉. In the following, we denote as 〈s̄1, s̄2〉δ the optimal alignment which can

be obtained by allowing at most δ indels.

Clearly, δ∗ and µ∗ are not known a priori. However, we can polynomially simulate the computation

of d∗ by estimating the number µδ of matches that can be obtained for increasing values δ of indels.

The minimum value of the formula l + δ − µδ is, then, the best estimation for d∗. Formally:

L = min
δ∈[0,l/2]

{l + δ − µδ}

Now, given a maximum number δ of indels allowed in the alignment, we compute µδ by estimating

the number of potential matches ωδ(a, b) for each pair of symbols (a, b) in the corresponding alignment

〈s̄1, s̄2〉δ as follows:

ωδ(a, b) = min

(
l∑
i=1

κ(a, b, s1[i], s2[i− δ..i+ δ]),

l∑
i=1

κ(a, b, s1[i− δ..i+ δ], s2[i])

)

where κ(a, b, substr1, substr2) returns 1 if a appears in the substring substr1 and b appears in the

substring substr2; it returns 0 otherwise.

13

Observe that ωδ(a, b) is actually an overestimation of the true number of matches between a and

b in 〈s̄1, s̄2〉δ because it is not guaranteed that a and b are aligned in 〈s̄1, s̄2〉δ every time they have

been counted as a match.

Based on the values of ωδ, we can compute µδ as follows. First, we construct a (complete) bipartite

weighted graph Gδ = (V,U,E, ωδ), where each vertex in V (resp. U) is a symbol of Π1 (resp. Π2).

Then, we compute a maximum weighted matching Mδ on Gδ as follows:

µδ =
∑

ωδ(a, b) s.t. (a, b) ∈Mδ

Observe that the computation of the maximum weighted matching simulates the construction of

the valid matching schema that allows the highest number of matches.

Once these two tasks have been performed, it is possible to state the following proposition:

Proposition 4.1 L = minδ∈[0,l/2]{l+ δ−µδ} is a lower bound for d∗ = L〈π1,π2,χ〉(s1, s2) = l+ δ∗−µ∗,
that is L ≤ d∗

Proof

To show that L ≤ d∗, we must quantify the difference between the first and the second term of the

inequality.

We start by characterizing µδ and we show that it is monotonically increasing. In fact, µδ is

obtained by counting the co-occurrences of each pair of symbols that appear in a window of size

2 · δ + 1, because the substrings considered by κ are s2[i − δ..i + δ] and s1[i − δ..i + δ], respectively.

Clearly, enlarging the window does not produce a decrease of the co-occurrences.

Given the value δ∗ corresponding to the optimal solution of δ, µδ∗ ≥ µ∗. In fact, we have shown that

the estimation of the matchings computed by µδ is, actually, an overestimation of the real matchings

that can be obtained. Unfortunately, the real value of δ∗ cannot be determined without deriving the

exact solution.

Now, since l+δ∗−µ∗ is the minimum value that can be obtained from the exact solution, it follows

that minδ∈[0,l/2]{l + δ − µδ} ≤ l + δ∗ − µ∗, since δ∗ ∈ [0, l/2]. This proves the proposition. �

Complexity analysis. The computation of L requires the computation of the minimum of l+δ−µδ
for values of δ ∈ [0, l/2]. As a consequence, the formula l + δ − µδ must be checked O(l) times. Each

check involves: (i) a maximum weighted matching computation over a bipartite graph composed of

2|Π| nodes; (ii) for each pair of symbols (a, b) in Π1 and Π2 (and, hence, for O(|Π|2) pairs), the

computation of the weight ωδ(a, b). It is well known that the maximum weighted matching can be

computed in O(|Π|3); the computation of ωδ(a, b) requires to span, for each of the l symbols in s1

(resp., s2) a portion of s2 (resp., s1) that can be as large as O(l).

Summarizing, the worst case complexity of the lower bound computation is:

O(l × (|Π|3 + |Π|2 × l2))

14

Generalization to the case of unequal alphabet sizes and string lengths. In this paragraph

we analyze the generalization of the lower bound definition for strings with unequal alphabet sizes

and string lengths.

First of all, the case in which alphabet sizes are not equal does not imply changes in the computation

of the lower bound because, for each pair of symbols (a, b), the same computations for ωδ(a, b) must

be carried out. Even the computation of the maximum weighted matching does not change: the graph

would consist of a set of |Π1| nodes and a set of |Π2| nodes.

When the lengths of the strings are different, some more refined considerations on the possible

number of indels in the optimal alignment, and on the length of the intervals to be checked in ωδ(a, b),

must be carried out. In order to draw the discussion in an easier way, and without a loss of generality,

we can assume that s1 is always the shortest string, with len(s1) = lm and len(s2) = lM .

First of all, consider that, given the different string lengths, and given the need of producing two

equal length alignments s̄1 and s̄2, a number δ̄ = lM − lm of “gap filling” insertions on lm will be

always needed. As a consequence, the definition of d∗ for the general case is:

d∗ = lm + δ̄ + δ∗ − µ∗

Observe that this is equivalent to write d∗ = lM +δ∗−µ∗. However, we will need to explicitly refer

to δ̄ later on, defined as the additional indels to the “standard” ones. As a consequence, we prefer

this more indel-oriented expression. In an analogous way, the definition of L is generalized to:

L = min
δ∈[0,lm/2]

{lm + δ̄ + δ − µδ}

where,

ωδ(a, b) = min

(
lm∑
i=1

κ(a, b, s1[i], s2[i− δ..i+ δ̄ + δ]),

lM∑
i=1

κ(a, b, s1[i− δ̄ − δ..i+ δ], s2[i])

)

Observe that, in the first term (that refers to the shorter string s1), δ̄ is involved just in the upper

bound for determining the substring of s2, because it would be meaningless to delete more than lm/2

symbols from s1 for an optimal alignment. Analogously, in the second term (that refers to s2), δ̄ is

involved just in the lower bound for determining the subset of s1, because it would be meaningless to

insert more than lm/2 symbols in s2 for an optimal alignment.

It is clear enough that if lm = lM then δ̄ = 0 and all the formulas get back to the previous ones.

Extension to generic values of π1 and π2. The philosophy underlying the computation of L for

generic values of π1 and π2 does not change with respect to the case when π1 = 1 and π2 = 1, examined

in detail above. The only difference is that the computation of the maximum weight matching must be

substituted by the computation of the proper subsets of Π1 and Π2 on the bipartite graph such that:

(i) all the arcs within the subsets are considered in the computation of µδ, and (ii) µδ is maximum.

15

4.3 Heuristics for the computation of L〈π1,π2,χ〉(s1, s2)

After having proved that the problem of computing L〈π1,π2,χ〉(s1, s2) is intractable, it appears rea-

sonable to proceed with the definition of heuristics for solving it. This section aims at providing a

contribution in this setting.

The basic idea underlying the proposed heuristics is that, if we were armed with the best matching

schema, then the computation of the generalized edit distance between s1 and s2 could be done easily

by means of dynamic programming. Thus, we may resort to heuristic methods in order to iteratively

refine a starting matching schema while searching for the optimal one. Several heuristics could be

adopted for this purpose, ranging from the ones based on local search, such as the random-restart

steepest ascent hill climbing algorithm (hereafter, HC) or the simulated annealing (hereafter, SA), to

those exploiting genetic algorithms based on evolution strategy (hereafter ES). In this section, we focus

on the definition of these heuristics, whereas in Section 5 we report the results of several experiments

evaluating them.

4.3.1 Random-restart steepest ascent hill climbing

Intuitively, at step 0, a starting matching schema M0 is chosen, and LM0
(s1, s2) is computed. At

the generic iteration i, the neighbors M i
νj of the current matching schema M i are considered, and the

distances LM
i
νj (s1, s2) are computed. A neighbor M i

νj of a matching schema M i is a perturbation of M i

that exchanges only one pair of symbols between two partitions of the same alphabet. The matching

schema that guarantees the lowest distance is, then, chosen and set as the starting matching schema

M i+1 for the next step. This activity stops when the edit distance cannot be further improved. When

this happens, the current edit distance is returned as the result. To avoid repeated computations, a

hash map registering the already verified matching schemas is exploited.

Finally, in order to increase the chances of finding the optimal alignment, a certain number of

random restarts, each characterized by a new randomly selected matching schema, are carried out.

Since, at each step, we are interested in finding a matching schema that returns a distance

LM
i
νj (s1, s2) lower than the current minimum dmin, in order to compute LM

i
νj (s1, s2) we resort to

the approach presented by Landau and Vishkin in [33], which is able to compute the edit distance

between s1 and s2 in O(dmin · max{len(s1), len(s2)}), if this distance is less than dmin. The ideas

illustrated above are formalized in the Algorithm COMPUTE-F, reported in Algorithm 1.

We observe that explicitly storing, comparing, and ordering matching schemas can be computa-

tionally heavy, from both the execution time and the space occupancy perspectives. In our solution,

we take advantage of some peculiarities of matching schemas, which allow us to resort to a virtual

and compact representation of them. This allows significant reductions of both the time and the space

required to handle the manipulation of matching schemas.

In particular, given the pair of parameters π1 and π2, a valid configuration of a matching schema

has always the form depicted in Figure 2(a), where a matching schema for π1 = 3 and π2 = 2 is

used as an example. Observe that, if we change the order of the symbols in Π1 and Π2, instead of

the content of the matrix, as represented in Figure 2(b), the representation of the matching schema

still holds. As a consequence, a cheaper representation of matching schemas may simply resort to

16

Figure 2: Examples of matching schemas for π1 = 3 and π2 = 2

the order of the symbols in Π1 and Π2, as they imply symbol subsets, matches, and mismatches. For

instance, the matching schema of Figure 2(b) can be simply represented by the pair of ordered symbols

Π1 = {a4, a7, a3, a1, a5, a6, a2, a8, a10, a9} and Π2 = {b3, b4, b1, b2, b8, b9, b5, b6, b7}; in this case, the

subsets of symbols {a4, a7, a3} of Π1 and {b3, b4} of Π2 match. With this representation at hand,

changing the matchings of a symbol ai in Π1 with symbols in Π2 simply translates with a change in

the position of ai in Π1.

In our solution, we exploit this representation for initializing matching schemas, for computing

neighbors and for storing checked matching schemas in the hash map. Since this representation is

transparent to the actual usage of matching schemas, for the sake of presentation, we express operations

on matching schemas as they were explicitly represented as matrices.

As for the used hash map, we rely on the unordered map implementation offered by the C++11

std library. In particular, for each matching schema, the key for the hash map is obtained by the

juxtaposition of the pair of ordered symbols of its representation, as described above. The selected

implementation uses open hashing, and the elements in the hash map are organized into buckets,

depending on their hash values.

One of the most interesting operations carried out in COMPUTE-F is the construction of the neighbors

of a given matching schema M . This task is formalized in the function Neighbors, reported in

Algorithm 2. In particular, given a starting matching schema M , its rows and columns are virtually

swapped one by one in order to generate matching schemas that differ from M in only one symbol

swap of subets.

4.3.2 Simulated Annealing

Simulated annealing is a very popular local search meta-heuristic adopted to address both discrete

and continuous optimization problems [32, 23]. The main feature of SA is that of trying to escape local

optima by moving towards worse solutions in the hope of reaching a global optimum. Generally, the

aim of SA is to bring a system from an arbitrary initial state to one with the minimum possible energy.

17

Input : two strings s1 and s2 over the alphabets Π1 and Π2, respectively;

a set χ of constraints;

three integers π1, π2, and T ;

Output: L〈π1,π2,χ〉(s1, s2);

Data : two |Π1| × |Π2| matching schemas M and M ′;

Checked : a hash map for tested matching schemas;

improved : boolean;

t,mindist , globaldist : integer

begin

t = 0;

initialize(M ,π1,π2,χ);

mindist = LM (s1, s2);

globaldist = mindist ;

improved = true;

Checked = ∅;
while improved do

improved = false;

N = Neighbors(M,χ);

foreach M
′
in N and not in Checked do

Checked=Checked ∪ M
′
;

if LM
′
(s1, s2) < mindist then

mindist = LM
′
(s1, s2);

improved = true;

M = M
′
;

end

end

if not improved then

if mindist < globaldist then

globaldist = mindist;

improved = true;

t = 0;

else if t < T then

t = t+ 1;

improved = true;

M = randomSelect(M ,π1,π2,χ);

mindist = LM (s1, s2);

end

end

return globaldist ;
end

Algorithm 1: The algorithm COMPUTE-F for the computation of L〈π1,π2,χ〉(s1, s2) by means of

HC

In particular, the algorithm behaves as follows. At each iteration, a new state is selected, its energy

is computed and compared to the current one. If the computed energy is better, the system moves in

the new state; otherwise, it decides to move in the new state anyway with a certain probability. The

number of iterations depends on an initial parameter of SA, called temperature, which decreases with

each iteration.

18

Function Neighbors (M,χ)
Input : a matching schema M over the alphabets Π1 and Π2, respectively;

a set of constraints χ;

Output: a set of matching schemas MS;

Data : n, m, r1, r2, c1, c2: integer;

begin
MS = ∅;
for r1 = 0 to |Π1| do

for r2 = r1 to |Π1| do
swaprows(M , r1, r2);

for c1 = 0 to |Π2| do
for c2 = c1 to |Π2| do

swapcolumns(M , c1, c2);

if isvalid(M ,χ) then

MS = MS ∪M ;

end

end

end

end

return MS;
end

Algorithm 2: The function Neighbors for the construction of the neighbors of a given match-

ing schema M

In our context, a state is simply represented by a matching schema M and its energy is LM (s1, s2).

At each iteration, a neighbor Mr of the current matching schema M is selected and its energy

LMr(s1, s2) is computed. In this case, a neighbor Mr of a matching schema M is a random per-

turbation of M .

The formalization of the solution with SA is detailed in Algorithm 3. In particular, it starts by

setting the temperature parameter as [(len(s1) + len(s2) · (|Π1|+ |Π2|)]; this is the value also used in

our experiments. Then, a first initial state (i.e., a matching schema Mcurr) is determined according to

π1, π2 and χ, and its energy (i.e., LMcurr(s1, s2)) is computed. Until the temperature decreases, the

current matching schema is randomly perturbed to generate a new matching schema. If this returns

a better solution w.r.t. the current one, we move to the new state of the system; otherwise, the

probability function move() is used to decide whether to move to the new state or not.

If we moved to the new state, the obtained distance is updated accordingly. Eventually, the

temperature decreases to zero and the best distance, according to SA, is returned.

4.3.3 Evolution Strategy

Evolution Strategies [5, 16, 45] belong to the category of Genetic Algorithms and are inspired by the

theory of evolution through natural selection. In particular, this heuristic is based on species-level

processes of evolution, like hereditary and variation.

The aim of an Evolution Strategy (ES) algorithm is to improve the quality of a collection of

candidates through the generation of descendants from parents by mutation operators, guided by an

19

Input : two strings s1 and s2 over the alphabets Π1 and Π2, respectively;

a set χ of constraints;

two integers π1, π2;

Output: L〈π1,π2,χ〉(s1, s2);

Data : two |Π1| × |Π2| matching schemas Mcurr and Mrand;

temp, dcurr, drand, d
∗: integers;

begin

temp = (len(s1) + len(s2))(|Π1|+ |Π2|);
initialize(Mcurr,π1,π2,χ);

d∗ = ∞;

dcurr = LMcurr(s1, s2);

while temp > 0 do

Mrand = randomPerturbation(Mcurr, π1, π2, χ);

drand = LMrand(s1, s2);

if drand < dcurr or move() then

dcurr = drand;

Mcurr = Mrand;

if dcurr < d∗ then

d∗ = dcurr;

end

end

temp = temp −1;

end

return d∗;
end

Algorithm 3: The algorithm for the computation of L〈π1,π2,χ〉(s1, s2) by means of Simulated

Annealing (SA)

objective function. Several variants of ES exist. In this paper, we consider the (µ + λ)-ES, where

µ is the number of candidate solutions in the parent generation, and λ is the number of candidate

solutions obtained from the parent generation. Then, at each generation, the best µ individuals are

kept from the λ candidates and their parents. An important parameter characterizing the algorithm

is the number of generations considered for the evolution of the group.

Our implementation of ES for L〈π1,π2,χ〉(s1, s2) is shown in Algorithm 4. Here, each individual is a

matching schema M ; it is efficiently represented as described in Section 4.3.1. The objective function

used to select the best individuals in a generation is just LM (s1, s2). Finally, a variant of the Swap2

mutator is used as mutation operator; it selects two random elements of the matching schema and

swaps them. The algorithm stops when the given number of generations ngen is reached and returns

the best individual.

5 Experiments

In this section, we evaluate the applicability of the proposed framework and the effectiveness of

the proposed heuristics for computing L〈π1,π2,χ〉(s1, s2). In particular, first we compare the heuris-

tics presented in this paper, namely HC, SA, and ES, in such a way as to determine their pros and

20

Input : two strings s1 and s2 over the alphabets Π1 and Π2, respectively;

a set χ of constraints;

five integers π1, π2, µ, λ and ngen;

Output: L〈π1,π2,χ〉(s1, s2);

Data : P, C: set of individuals;

c, p, p∗: individuals;

cgen: integer;

begin

for i = 0 to µ do

p = randomIndividual(π1,π2,χ);

addTo(p, P);

end

cgen = 0;

while cgen < ngen do

C = ∅;
for j = 0 to λ do

c = randomSelectionFrom(P);

applyMutation(c);

setValue(c, Lc(s1, s2));

addTo(c, C);
end

P = getBestIndividuals(C, P);

cgen = cgen+ 1;

end

p∗ = getBestIndividual(P);

return getValue(p∗);

end

Algorithm 4: The algorithm for the computation of L〈π1,π2,χ〉(s1, s2) by means of Evolution

Strategy (ES)

cons. Then, we provide a wide comparison between our approach and other kinds of heuristics.

Due to space constraints, we present only a relevant subset of the obtained results. The interested

reader can find the complete data sets, the executable codes and the obtained results at the address

https://www.mat.unical.it/terracina/kbs-mped/.

5.1 Comparison of HC, SA, and ES

In our campaign, we considered two main aspects, namely: (i) the reliability and (ii) the execution

time of the heuristics of interest. To precisely evaluate the reliability, we compared the results returned

by the involved heuristics on a set of test data, pre-labeled with the exact value of L〈π1,π2,χ〉(s1, s2)

for them as computed by applying the approach EX, which, as described in Section 4, returns the

exact solution. As we pointed out in that section, EX is unfeasible for large values of |Πi| and πi, and,

consequently, we performed this test only for small data sets. Then, in order to test the reliability of

our approach on larger data sets, we carried out two further evaluations. The former considers, as the

reference value for L〈π1,π2,χ〉(s1, s2), the estimation provided by the lower bound; the latter assumes,

as the reference value for L〈π1,π2,χ〉(s1, s2), the lowest one returned by the three heuristics in each

21

test. All details are provided below. The analysis of the execution times has the twofold purpose of

measuring the gain of the heuristics with respect to the exact solution and of verifying their actual

applicability to real cases.

In the following, first we describe the exploited dataset and we discuss the values of the heuristics

parameters; then, we illustrate the results of our evaluations.

5.1.1 Dataset

Each element of the dataset is a pair of strings (s1, s2). Without loss of generality, and to simplify our

presentation, for each pair (s1, s2) we made the following assumptions:

• len(s1) = len(s2) = len(s);

• |Π1| = |Π2| = |Π|;

• π1 = π2 = π.

To process a large corpus of tests for the comparison with EX, we generated test instances for each

combination of the following values of len(s), |Π|, and π:

• len(s) = {50, 100, 200, 350, 500};

• |Π| = {3..10};

• π = {1..4} and such that π <
⌈
|Π|
2

⌉
.

Furthermore, to test the reliability of our approach for larger instances, we generated further ones

with the following properties:

• len(s) = {1000, 2000, 3500};

• |Π| = {8, 10, 12, 14, 16};

5.1.2 Parameters for the heuristics

We performed all our tests with specific values of the heuristic parameters. Whenever not differently

specified, the following parameter values have been used:

• as for HC, the number of restarts, denoted by the input parameter T in Algorithm 1, was set to

3;

• as for SA, the initial value of the temperature was set to [(len(s1) + len(s2)) · (|Π1|+ |Π2|)];

• as for ES, µ was set to 5, λ was set to 20 and the maximum number of generations was set to 20.

22

len(s)

π |Π| 50 100 200 350 500

PHC PSA PES PHC PSA PES PHC PSA PES PHC PSA PES PHC PSA PES

1

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00

5 0.98 0.98 0.99 0.96 0.96 0.97 0.99 0.99 0.98 0.99 0.99 1.00 0.99 0.99 1.00

6 1.00 1.00 1.00 0.97 0.97 0.98 1.00 1.00 1.00 0.98 0.98 0.98 0.97 0.97 0.98

7 1.00 1.00 1.00 0.97 0.97 0.99 0.96 0.96 0.98 1.00 1.00 1.00 0.97 0.97 0.99

8 0.93 0.93 0.96 0.98 0.98 0.99 0.96 0.96 0.98 0.97 0.97 0.99 1.00 0.98 1.00

9 1.00 0.93 0.99 1.00 1.00 1.00 1.00 0.98 1.00 0.98 0.98 1.00 0.99 0.99 1.00

10 0.93 0.93 0.97 0.95 0.95 0.97 0.97 0.97 0.98 1.00 0.97 0.99 0.97 0.97 0.99

2

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00

6 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 0.98 0.99 0.99 0.99 0.97 0.97 0.99

7 1.00 1.00 1.00 0.98 0.98 1.00 0.97 0.97 0.99 0.99 0.98 0.99 1.00 0.98 1.00

8 1.00 1.00 1.00 0.99 0.98 0.99 0.98 0.98 0.99 1.00 0.98 1.00 0.99 0.98 1.00

9 1.00 0.98 1.00 1.00 0.99 1.00 0.99 0.99 1.00 0.99 0.97 0.99 0.98 0.97 1.00

10 0.97 0.96 0.98 0.99 0.98 1.00 0.98 0.97 0.99 1.00 0.96 1.00 0.99 0.96 1.00

3

7 0.93 0.93 0.95 0.94 0.94 0.96 1.00 1.00 1.00 0.99 0.97 0.99 0.99 0.98 1.00

8 0.98 0.98 0.99 0.98 0.97 0.99 1.00 0.98 1.00 0.99 0.98 1.00 0.99 0.98 0.99

9 1.00 0.96 1.00 0.99 0.95 1.00 0.99 0.96 0.99 1.00 0.97 1.00 1.00 0.96 1.00

10 0.97 0.95 0.98 0.97 0.96 0.99 0.98 0.95 0.99 0.99 0.98 1.00 0.99 0.97 0.99

Table 1: Values of PHC , PSA, and PES for different values of π, |Π| and len(s)

5.1.3 Reliability

As previously pointed out, to measure the reliability of HC, SA, and ES, we compared the results

provided by them with those returned by EX. For each test, we carried out ten executions of the

heuristics and averaged the obtained solutions.

Given a heuristic H (where H can be HC, SA, ES), we measured the Precision of the solutions provided

by H as follows. Let dEX be the exact solution for an instance of L〈π1,π2,χ〉(s1, s2), and let dH be the

(average) solution returned by H. The Precision PH is computed as:

PH = 1− dH − dEX
dEX

Table 1 shows PHC , PSA, and PES for the configurations that we tested. Note that a Precision of

1.00 means that the corresponding heuristics provided exactly the value dEX .

From the analysis of Table 1 we observe that, even with long sequences or large alphabets, PHC ,

PSA, and PES are always very high. This is encouraging and allows us to expect a very high reliability

of the two heuristics in real application cases. Among these results, ES shows slightly better results

overall, whereas SA shows the lowest Precision in some cases.

As previously pointed out, in a second group of experiments, we used the lower bound, com-

puted as described in Section 4.2, as the reference value for L〈π1,π2,χ〉(s1, s2). In particular, given the

lower bound dL computed for L〈π1,π2,χ〉(s1, s2), and the (average) solution dH returned by one of the

23

len(s)

|Π| 1000 2000 3500

P lHC P lSA P lES P lHC P lSA P lES P lHC P lSA P lES

8 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

10 0.82 0.81 0.82 0.80 0.78 0.81 0.82 0.80 0.81

12 0.82 0.80 0.83 0.82 0.81 0.82 0.81 0.79 0.82

14 0.80 0.79 0.81 0.81 0.80 0.81 0.81 0.80 0.82

16 0.80 0.79 0.80 0.82 0.81 0.83 0.82 0.79 0.83

Table 2: Values of P lHC , P lSA, and P lES for different values of |Π| and len(s)

len(s)

|Π| 1000 2000 3500

PmHC PmSA PmES PmHC PmSA PmES PmHC PmSA PmES

8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 1.00 0.98 1.00 0.99 0.96 1.00 1.00 0.97 0.99

12 0.99 0.97 1.00 1.00 0.99 1.00 0.99 0.97 1.00

14 0.99 0.98 1.00 1.00 0.98 1.00 0.99 0.98 1.00

16 1.00 0.97 1.00 0.99 0.98 1.00 0.99 0.97 1.00

Table 3: Values of PmHC , PmSA, and PmES for different values of |Π| and len(s)

considered heuristics H, the Precision P lH for this case is defined as:

P lH = 1− dH − dL
dL

Table 2 shows P lHC , P lSA, and P lES for these tests. The corresponding results can be read from two

perspectives. First, even for bigger data sets, Precision looks satisfactory, provided that it is almost

always greater than 80%. However, if we read these values together with the ones shown in Table

1, we may interpret them on the side of the tightness of the lower bound. In particular, we may

state that the lower bound is generally not lower than 20% of the exact value, then showing a good

approximation.

Finally, to better test the differences between the heuristics into consideration, we also carried out

a set of experiments where we used, as reference value for L〈π1,π2,χ〉(s1, s2), the lowest one computed

by the three heuristics. This can also be considered as an upper bound for the exact solution. In

particular, given the lowest value dmin computed by HC, SA, and ES for a given test, and given the

(average) solution dH returned by one of the considered heuristics H, we computed the Precision PmH
as:

PmH = 1− dH − dmin
dmin

Table 3 shows PmHC , PmSA, and PmES for this case. In this table, a Precision equal to 1 for a certain

heuristic H indicates that it always returned the lowest value for L〈π1,π2,χ〉(s1, s2) in all the runs for

that configuration.

From the analysis of this table, it is possible to observe that there are only small differences among

24

5 10 15 20 25 30 35 40 45 50
0.75

0.80

0.85

0.90

0.95

1.00

|Π| = 10, len(s) = 500, π = 1

|Π| = 9, len(s) = 500, π = 2

|Π| = 8, len(s) = 500, π = 3

Figure 3: Precision PES against the number of generations for different combinations of |Π|, len(s)

and π

the three heuristics, with SA showing slightly worst results overall and ES showing almost always the

best results.

5.1.4 A deeper analysis on the reliability of ES

In the previous section, we have shown that, overall, ES presents better performances than HC and

SA in terms of Precision. Here, we better analyze this heuristic, based on one of the most relevant

parameters for it, namely the number of generations.

As a matter of fact, a high number of generations corresponds to a wide search space; this implies

a high probability of obtaining the best solution. However, a high number of generations implies a

high execution time required to explore the search space. As a consequence, a proper tradeoff between

Precision values and running times must be found.

To carry out this analysis we considered three of the most complex configurations for which the

exact solution was known. Then, for each of them, we ran ES with increasing numbers of generations,

from 5 to 50. For each test we carried out several runs and averaged the obtained results. Then, we

computed Precision with respect to the best exact solution.

The obtained results are shown in Figure 3. From the analysis of this figure, it is straightforward

to observe that a low number of generations (around 5) cannot guarantee a good level of Precision.

However, this parameter quickly increases when the number of generations increases and asymptot-

ically tends to 1. From 20 generations on, the improvement of Precision against the increase of the

number of generations is marginal. As a consequence, from this analysis, it is possible to conclude that

20 represents the minimum number of generations necessary to obtain satisfactory results in terms of

Precision. In the next section, we show that this value is also satisfactory in terms of execution time.

5.1.5 Execution time

In order to evaluate the temporal behavior of the implemented heuristics we designed two main

experiments focusing on the variations of |Π| and len(s), respectively.

25

3 4 5 6 7 8 9 10
10−3

10−2

10−1

100

101

102

103

104

105

HC

SA

ES

EX

3 4 5 6 7 8 9 10
10−3

10−2

10−1

100

101

102

103

104

105

3 4 5 6 7 8 9 10
10−3

10−2

10−1

100

101

102

103

104

105

3 4 5 6 7 8 9 10
10−3

10−2

10−1

100

101

102

103

104

105

Figure 4: Execution time (in seconds) of EX, HC, SA, and ES against |Π|. The four graphs, from top to

bottom and from left to right, indicate the results for len(s) = 100, 200, 350 and 500, respectively

We start by showing the results of the experiment centered on the variation of |Π|. For each value

of this parameter belonging to the integer interval [3, 10], we computed the running time necessary

to obtain L〈1,1,∅〉(s1, s2) by applying EX, on the one hand, and HC, SA, and ES, on the other hand.

Execution times were measured in seconds. We carried out the same computation for each value of

len(s) belonging to the set {100, 200, 350, 500}. Figure 4 shows the obtained results. Here, for each

value of len(s), we show the increase of the execution time against |Π|.
From the analysis of this figure, it is easy to see that, as expected, EX shows an exponential increase

of its running time; therefore, its application becomes soon unrealistic. SA is always slower than HC

and ES and, in some cases, even slower than EX. This is due to the intrinsic nature of this heuristic,

which may require a certain number of unnecessary iterations. HC is always faster than EX and always

below 1 second. ES can be slightly slower than EX and HC for low values of |Π|; this is mainly due to

the number of generations that must be checked anyway. However it scales better than HC, and better

than all the other heuristics, showing the fastest execution times for high values of |Π|.
The second experiment focuses on the variation of the execution time of EX, HC, SA, and ES against

len(s). In particular, for each value of len(s) belonging to the set {50, 100, 200, 350, 500}, we computed

the running time necessary to obtain L〈1,1,∅〉(s1, s2) for EX, HC, and SA. In this case, we considered

six different values of |Π|, i.e., |Π| ∈ {5..10}. Therefore, we obtained six different graphs. The

corresponding results are shown in Figure 5.

26

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

|Π| = 5
HC

SA

ES

EX

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

|Π| = 6

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

|Π| = 7

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

|Π| = 8

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

|Π| = 9

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

|Π| = 10

Figure 5: Execution time (in seconds) of EX, HC, SA and ES against len(s). The six graphs, from top

to bottom and from left to right, indicate the result for |Π| ∈ {5..10}

From the analysis of this figure, it is easy to see that an increase of l and an increase of |Π| lead

to a steep increase of the execution time of EX, which becomes out of scale already for len(s) = 50

with |Π| = 10. The execution time of HC and ES are basically flat and always below 1 second for each

configuration; this make HC and ES far more perfoming than SA.

As a closing remark, considering the results of both reliability and execution time, we can conclude

that HC and ES perform similarly and both better than SA, with a slight preference for ES in terms of

both Precision and execution time.

Interestingly, as it was shown in [11], ES can be easily parallelized, with the possibility of obtaining

significant improvements, in terms of performances, on parallel architectures.

5.2 Analysis of different heuristics

In this section, we carry out a wider analysis, comparing HC, SA, and ES with several other kinds of

heuristics. In order to easily test these last ones, we used a tool called HeuristicLab (HL for short).

HL is an environment in which different already implemented heuristics can be used; it allows the end

user to focus on problem design rather than on heuristics implementation [49].

In particular, we tested the following algorithms available in HL: local search, simulated annealing,

genetic algorithm, offspring selection genetic algorithm, genetic algorithm with an age-layered popula-

27

tion structure, and offspring selection evolution strategy. The aim of these tests is to check whether

there exists a category of heuristics more promising than ES and HC; we focused on the capability of

reaching the lowest value of MPED in the lowest number of iterations.

HL allows the setting of a certain number of parameters for each heuristic. In particular:

• As for local search, we set the sample size to |Π1|+ |Π2|.

• As for (the HL version of) simulated annealing, we set the number of inner iterations to |Π1|+|Π2|,
the start temperature to 100, and we used the exponential discrete double-value modifier as

annealing operator.

• As for genetic algorithm, we set the population size to 10(|Π1|+|Π2|), we selected {swap2, swap3}
as mutators, we chose {partially matched, cyclic} as crossover operators and {proportional, with

windowing} as selectors, then we set the mutation probability to 5% and the elites to 1.

• As for offspring selection genetic algorithm, parameters were the same as the genetic algorithm

and we set the maximum selection pressure and the number of selected parents to 200, the

comparison factor to 0, the lower bound comparison factor and the upper bound success ratio

to 1, and the offspring selection before mutation to false.

• As for the genetic algorithm with ALPS, we set the number of layers to 10, the selector as

generalized rank with pressure 4 and the plus selection to false; the other parameters were the

same as the genetic algorithm.

• As for offspring selection evolution strategy, we set the maximum selection pressure to 200,

the comparison factor to 0.5, the success ratio to 1, the elites to 1, the selected parents to 40

and the plus selection to true, with the values of population size and mutators identical to the

corresponding ones of the genetic algorithm.

We considered pairs of randomly generated strings. The varied parameters are the alphabet cardi-

nalities |Π1| and |Π2| and the string lengths len(s1) and len(s2). Furthermore, we added a correlation

degree to each pair of strings. In particular, we considered the following parameter values:

• len(s) = 256;

• |Π| = {8, 12, 16};

• π = 1;

• degree of added correlation: {0, 0.5, 1}.

For each combination of parameters, we generated one instance of the problem. For each of these

instances, we applied the heuristics we wanted to investigate. To take the result stochasticity into

account, we repeated the execution of each heuristic 10 times on the same problem instance.

Due to space constraints, we discuss here only the results obtained for |Π| = 12 and a degree of

added correlation equal to 0.5; these are shown in Figure 6. In this figure, all the algorithm names

28

Figure 6: Results obtained by applying several heuristics when |Π| is set to 12 and the degree of added

correlation is set to 0.5

starting with HL refer to the implementations provided by Heuristic Lab. The other ones are the

algorithms implemented in this paper. The interested reader can find all the other results at the

address: https://www.mat.unical.it/terracina/kbs-mped/.

From the analysis of Figure 6, it is possible to observe that, even if HC performs well, its results

are further improved again by ES, which also shows the overall best performance. The results of ES

are generally better than the ones of all the HL heuristics.

6 Applications of FL

In this section, we present three cases where we applied FL. The purpose of this presentation is

twofold. In fact, it proves that there are very different real cases that can highly benefit from the

specific metric introduced in this paper. Furthermore, as an even more interesting fact, it gives an

idea of the enormous potentialities of our framework, especially if we generalize all the possible string

metrics mentioned in Section 3.1 in a way analogous to what we have done for the edit distance, which

MPED derives from.

29

6.1 Application of MPED in Wireless Sensor Networks

A Wireless Sensor Network (hereafter, WSN) is a network of multi-functional and low-cost sensors,

characterized by low energy consumption. Examples of sensors adopted in WSNs are those measuring

temperature, humidity, light, noise, electric current, voltage and power.

WSNs are becoming increasingly pervasive thanks to the increasingly powerful technology, which

they are based on [2]. However, owing to their enormous complexity and heterogeneity, new efficient

techniques to manage them [18, 19] are necessary.

In this context, one of the most challenging issues to address regards the automatic detection

of anomalies [9], i.e., the identification of items, events or observations giving rise to suspicions.

Anomalies may rise for several reasons. Think, for instance, of devices that run out of power or that

deviate from their expected behavior.

In past literature, a lot of efforts were made for anomaly detection in homogeneous WSNs [55,

1, 52, 38]. The proposed techniques are generally based on mathematical or statistical computations

applied on data streams and tailored to the characteristics of sensed data. Instead, anomaly detection

in heterogeneous sensor networks has received less attention. Furthermore, the approaches conceived

for homogeneous WSNs do not show good performance when applied in this new, and very different,

scenario.

Our framework, when specialized to MPED (i.e., FL), can play a relevant role in this application

case. As a matter of fact, in [12], we proposed an MPED-based approach to anomaly detection in

WSNs. This approach consists of two phases. The former aims at training the WSN into examina-

tion under “normal” operating conditions. The latter applies the knowledge thus gained to identify

potential anomalies. Intuitively, one of the novelties of this approach in this scenario consists in the

fact that the training phase does not compute expected values for the involved sensors, but expected

correlations among them. In particular, during the first phase, for each sensor, and for each hour of the

day, our approach identifies the most correlated sensor (called mate). This is used as the reference one

during the second phase. In fact, whenever the correlation between a sensor and a mate significantly

changes, a potential anomaly is registered.

FL plays a relevant role in this approach because the sensors to examine could be heterogeneous

and, in this case, the classical edit distance would fail. In [12], we showed that our approach is capable

of precisely identifying anomalies spanning over long periods, which are difficult to be detected by other

methods. Furthermore, we proved that our approach presents not only a good quality in measuring

signal relatedness, but also a good robustness to unexpected variations of signals, as well as a good

sensitivity to signal noises.

6.2 Application of MPED to extract and characterize White Matter fiber-bundles

of brain

In the investigation of the brain, the capability of extracting and visualizing White Matter (hereafter,

WM) fibers plays a key role. For instance, the knowledge of these fibers can provide an important

contribution to understand and predict the effects of several neurodegenerative pathologies [51]. Trac-

tography is currently considered the most accurate method to perform this task [39].

30

Particular sets of fibers (called fiber-bundles) denote different WM structures [10]. Their investi-

gation is extremely important for neurologists. However, in order to carry out this task, it is necessary

to isolate subsets of fibers belonging to a certain WM region. The isolation activity is often carried

out manually by expert neuroanatomists, who define the suitable criteria allowing a region of interest

to be delineated and specific fiber-bundles to be isolated [36]. Clearly, this way of proceeding is time

expensive and the definition of automatic, or at least semi-automatic, approaches is in order.

As a matter of fact, in the past, several automatic approaches to isolate WM fiber-bundles have

been proposed (see, for instance, [54, 21]). Most of them are based on clustering. In particular, the

clustering task is guided by the fiber layout in the three-dimensional space. Actually, approaches

operating in this way suffer from several limitations. For instance, some of them require a complex

and time consuming supervision performed by experts, who carry out it through a “try-and-check”

activity.

Our framework specialized to MPED (i.e., FL) can provide an important contribution to address

this issue. Indeed, in [47, 13], we proposed a semi-automatic model-guided approach to allow the

extraction of WM fiber-bundles from a set of tractography streamlines. Our approach is based on a

fiber-bundle model constructed with the support of an expert and representing an approximate shape

of the fiber-bundle to extract. It models a fiber as a sequence of m voxels in the three-dimensional

space. A color can be associated with each voxel, specifying its spatial orientation. As a consequence,

a fiber can be represented as a sequence of colors, each expressed in the RGB color space. This last

can be discretized in such a way that a fiber can be represented as a string.

In this way, the WM fiber-bundle extraction problem reduces to a string similarity one. MPED

can provide a great contribution to address this problem. Indeed, thanks to it, the extraction of WM

fiber-bundles can be performed by computing (through MPED) the dissimilarity between the model

fiber-bundles and the real fibers and, then, by selecting the real fiber-bundles having a dissimilarity

degree w.r.t. the model fiber-bundle less than a given threshold.

Interestingly, in this case, data are not heterogeneous in their original format, but the adoption

of a string-based representation of WM fibers allows a complex problem involving multi-dimensional

data to be reduced to a simple comparison of heterogeneous strings. The heterogeneity of these last

ones is due to the fact that they derive from several data flows. These are very different but, on the

other side, their heterogeneity is extremely precious because it guarantees a multi-view and complete

representation of the event to investigate (see [47, 13, 14] for all details).

Extensive tests carried out on this scenario proved the goodness of this idea. Furthermore, they

showed that an approach based on FL can outperform existing and more specific algorithms.

6.3 Application of MPED to time series forecasting

Time series analysis is an important research area that is receiving an increasing interest. It comprises

methods for data analysis conceived to extract meaningful statistics or hidden properties of data.

Among others, time series forecasting aims at predicting future values based on both previously

observed values and a model. The potential applications of forecasting methods span several areas,

from economic trends to weather forecast and the prediction of user behavior.

Numerous kinds of approach have been exploited for carrying out this task; most of them are

31

based on statistical analysis, mathematical models and, recently, neural networks and deep learning

(see [42, 8, 35, 25, 53], just to cite a few).

In this context, the MPED’s capability of identifying hidden correlations between heterogeneous

data streams may provide an important contribution; in fact, it introduces a completely new way of

addressing the problem at hand.

Specifically, it would be particularly interesting to verify whether the capability of identifying

strongly related heterogeneous data streams, of aligning them, and of singling out the best matching

schemas between them can provide useful information to predict, with some probability, future values

of a stream based on previous observations. We next sketch this novel idea, which we intend to further

develop and test in some future work.

First of all, observe that two sequences with a very low MPED can be considered strongly related,

as there exists an alignment between them, characterized by very few indels, and where most of the

symbols of the first sequence match with corresponding ones of the second sequence. Given a target

sequence T , for which we want to predict future values, a first step of this new approach would consist

in finding a coupled sequence C, which (possibly for no apparent reasons) is strongly related to T . In

particular, we want to exploit observations on C to predict, with some probability, future values of

T . Then, we can compute some statistics by observing the past values of C and T , and, specifically,

by analyzing potential “cause-effect” properties between symbols appearing in C at the time instant

t and symbols appearing in T in the interval [t+ 1, t+ δ].

In our framework this can be obtained quite simply by:

• computing the best matching schema between symbols in C and T (with the limitations intro-

duced in the next items);

• obtaining the best alignment between C and T but limiting indels only to insertions on C; this

actually imposes to consider only shifts forward in time of symbols (events) of C to be matched

with symbols (events) of T 3;

• limiting δ to a fixed interval of interest [1, δmax].

The previous setting has several consequences. Indeed, if a strong correlation between C and T is

detected, then almost every symbol in C at any time instant t finds a match in T within the following

1 + δmax time instants. Consequently, given a symbol σ in C at the time instant t, we can state that

most probably, within the next 1 + δmax time instants, a symbol µ of T , matching σ according to the

best matching schema, will be present in T . This probability can be easily computed by counting the

number of times σ and µ are actually aligned in the optimal alignment, for every pair of σ and µ.

Observe that our approach allows the definition of the values of π1 and π2 such that each symbol in

C might match more symbols in T . In this case, we can provide multiple potential values of T that

can be found in [t+ 1, t+ δmax], each associated with a given probability.

Once all this data is computed, given a new symbol (event) in C, our approach can provide a list

of potential values that could appear in T within the next 1 + δmax time instants, along with the

3Observe that this can be easily implemented by limiting the possible “moves” in the dynamic programming imple-

mentation of MPED.

32

corresponding probabilities. As a consequence, a form of probabilistic forecasting can be carried out

on T .

Consider, again, the context of sensor analysis. Assume that we have determined, through the

approach described above, that the data stream of a temperature sensor (the target T) is strongly

related to the one of a light sensor (the coupled sensor C). Then, given a certain value of light at the

time instant t, we might provide the probability of finding a certain value of temperature measured

by T within the next 1 + δmax time instants.

Obviously, high values of δmax may increase the probability of finding frequent co-occurring matches

between symbols in C and T ; however, a high δmax can reduce the significance of the prediction.

Conversely, a value of δmax too low may significantly decrease the chance of finding a sequence strongly

correlated to T . As a general rule, δmax should be set to the maximum number of time instants that

are considered a reasonable period of uncertainty for obtaining the expected values.

7 Conclusion

In this paper, we have presented a framework aiming at generalizing existing string metrics in such

a way as to make them suitable for application scenarios where involved strings could be based on

heterogeneous alphabets. Our framework consists of a matching schema, which formalizes matches

between symbols, and a generalized metric function, which abstracts the computation of string metrics

taking the predefined matching schema into account.

We have provided an overview of the application of the proposed framework for generalizing some of

the most important string comparison metrics. Then, to give a precise idea of how this last activity can

be carried out, we have discussed in detail the generalization of the edit distance obtained by using the

proposed framework. Specifically, we have defined the Multi-Parameterized Edit Distance (MPED),

we have investigated its computational properties, we have proposed some solution algorithms for it,

and, finally, we have presented our experiments conceived to evaluate these algorithms.

As a final contribution, we have mentioned two applications in which the proposed generalized

metric has already proved its potential and one application where it seems really promising.

This paper should not be considered as an ending point. Instead, it is the starting point of future

research efforts in this field. First, the generalization of the other standard metrics mentioned in

Section 3.1 can pave the way to a wide variety of new application scenarios. Second, it appears

challenging to investigate the simultaneous comparison of multiple strings and the identification of

the best matching schema among them. In this context, it is not straightforward to define the meaning

of a globally optimal matching schema. Last, but not the least, an interesting research line consists

in the application of our generalized framework to continuous data streams. In this case, a simple

repeated computation of the metric at hand for each new incoming symbol would be computationally

unfeasible. As a consequence, new forms of continuous computation of metrics are in order.

33

Acknowledgments

This work was partially supported by the Italian Ministry for Economic Development (MISE) under

the project “Smarter Solutions in the Big Data World”, funded within the call “HORIZON2020” PON

I&C 2014-2020, and by the Department of Information Engineering at the Polytechnic University of

Marche under the project “A network-based approach to uniformly extract knowledge and support

decision making in heterogeneous application contexts” (RSAB 2018).

References

[1] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha. Unsupervised real-time anomaly detection for streaming data. Neu-

rocomputing, 262:134–147, 2017.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a survey. Computer

networks, 38(4):393–422, 2002.

[3] A. Amir and I. Nor. Generalized function matching. J. Discrete Algorithms, 5(3):514–523, 2007.

[4] A. Apostolico, Péter L. Erdös, and M. Lewenstein. Parameterized matching with mismatches. J. Discrete Algorithms,

5(1):135–140, 2007.

[5] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic

Algorithms. Oxford University Press, Oxford, UK, 1996.

[6] B.S. Baker. A theory of parameterized pattern matching: algorithms and applications. In STOC, pages 71–80.

ACM, 1993.

[7] B.S. Baker. Parameterized diff. In SODA, pages 854–855. ACM/SIAM, 1999.

[8] J. Bi, H. Yuan, L. Zhang, and J. Zhang. Sgw-scn: An integrated machine learning approach for workload forecasting

in geo-distributed cloud data centers. Inf. Sci., 481:57–68, 2019.

[9] H.H.W.J. Bosman, A. Liotta, G. Iacca, and H.J. Wortche. Anomaly detection in sensor systems using lightweight

machine learning. In Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on, pages 7–13.

IEEE, 2013.

[10] M. Catani and M.T. de Schotten. A diffusion tensor imaging tractography atlas for virtual in vivo dissections.

Cortex, 44(8):1105–1132, 2008.

[11] F. Cauteruccio, D. Consalvo, and G. Terracina. High performance computation for the multi-parameterized edit

distance. In 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP),

pages 567–574, 2018.

[12] F. Cauteruccio, G. Fortino, A. Guerrieri, A. Liotta, D.C. Mocanu, C. Perra, G. Terracina, and M. Torres Vega.

Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized

edit distance. Information Fusion, 52:13–30, 2019.

[13] F. Cauteruccio, C. Stamile, G. Terracina, D. Ursino, and D. Sappey-Marinier. An automated string-based approach

to white matter fiber-bundles clustering. In 2015 International Joint Conference on Neural Networks, IJCNN 2015,

Killarney, Ireland, July 12-17, 2015, pages 1–8. IEEE, 2015.

[14] F. Cauteruccio, C. Stamile, G. Terracina, D. Ursino, and D. Sappey-Marinier. An automated string-based approach

to extracting and characterizing White Matter fiber-bundles. Computers in Biology and Medicine, 77:64–75, 2016.

Elsevier.

[15] W.W. Cohen. Integration of heterogeneous databases without common domains using queries based on textual

similarity. In SIGMOD 1998, Proceedings ACM SIGMOD International Conference on Management of Data, June

2-4, 1998, Seattle, Washington, USA., pages 201–212. ACM Press, 1998.

[16] A.E. Eiben, J.E. Smith, et al. Introduction to evolutionary computing, volume 53. Springer, 2003.

34

[17] A.K. Elmagarmid, P.G. Ipeirotis, and V.S. Verykios. Duplicate record detection: A survey. IEEE Trans. Knowl.

Data Eng., 19(1):1–16, 2007.

[18] G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski, and R. Jafari. Enabling effective programming and flex-

ible management of efficient body sensor network applications. IEEE Transactions on Human-Machine Systems,

43(1):115–133, 2013.

[19] G. Fortino, A. Guerrieri, G.M.P. O’Hare, and A.G. Ruzzelli. A flexible building management framework based on

wireless sensor and actuator networks. J. Network and Computer Applications, 35(6):1934–1952, 2012.

[20] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.

Freeman, 1979.

[21] E. Garyfallidis, M. Brett, M.M. Correia, G. Williams, and I. Nimmo-Smith. Quickbundles, a method for tractography

simplification. Front. Neurosci., 6:175, 2012.

[22] P. Gawrychowski and P. Uznanski. Order-preserving pattern matching with k mismatches. In Combinatorial Pattern

Matching - 25th Annual Symposium, CPM 2014, Moscow, Russia, June 16-18, 2014. Proceedings, volume 8486 of

LNCS, pages 130–139. Springer, 2014.

[23] M. Gendreau and J.-Y. Potvin. Handbook of Metaheuristics. Springer, 2nd edition, 2010.

[24] A. Ghosh and S.K. Kuttal. Semantic clone detection: Can source code comments help? In 2018 IEEE Symposium

on Visual Languages and Human-Centric Computing, VL/HCC 2018, Lisbon, Portugal, October 1-4, 2018, pages

315–317. IEEE Computer Society, 2018.

[25] C.W.J. Granger and R. Joyeux. An introduction to longmemory time series models and fractional differencing.

Journal of Time Series Analysis, 1(1):15–29, 1980.

[26] L. Gravano, P.G. Ipeirotis, N. Koudas, and D. Srivastava. Text joins in an RDBMS for web data integration.

In Proceedings of the Twelfth International World Wide Web Conference, WWW 2003, Budapest, Hungary, May

20-24, 2003, pages 90–101. ACM, 2003.

[27] G. Greco and G. Terracina. Frequency-based similarity for parameterized sequences: Formal framework, algorithms,

and applications. Inf. Sci., 237:176–195, 2013.

[28] C. Hazay, M. Lewenstein, and D. Sokol. Approximate parameterized matching. ACM Trans. Algorithms, 3(3):29,

2007.

[29] Matthew A Jaro. UNIMATCH, a Record Linkage System: Users Manual. Bureau of the Census, 1980.

[30] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multilinguistic token-based code clone detection system for

large scale source code. IEEE Trans. Software Eng., 28(7):654–670, 2002.

[31] O. Keller, T. Kopelowitz, and M. Lewenstein. On the longest common parameterized subsequence. Theor. Comput.

Sci., 410(51):5347–5353, 2009.

[32] S. Kirkpatrick., C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680,

1983.

[33] G.M. Landau and U. Vishkin. Fast parallel and serial approximate string matching. J. Algorithms, 10(2):157–169,

1989.

[34] V. I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet physics doklady,

10(8):707–710, 1966.

[35] Y. Li, H. Shi, F. Han, Z. Duan, and H. Liu. Smart wind speed forecasting approach using various boosting

algorithms, big multi-step forecasting strategy. Renewable Energy, 135:540–553, 2019.

[36] J. Mårtensson, M. Nilsson, F. St̊ahlberg, P.C. Sundgren, C. Nilsson, D. van Westen, E.M. Larsson, and J. Lätt. Spa-

tial analysis of diffusion tensor tractography statistics along the inferior fronto-occipital fasciculus with application

in progressive supranuclear palsy. MAGMA, 26(6):527–537, Dec 2013.

[37] J. Mendivelso and Y. J. Pinzón. Parameterized matching: Solutions and extensions. In Stringology, pages 118–131.

Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in

Prague, 2015.

35

[38] X. Miao, H. Song, T. Biming, and P. Sazia. Anomaly detection in wireless sensor networks: A survey. J. of Network

and Computer Applications, 34(4):1302 – 1325, 2011.

[39] S. Mori, B.J. Crain, V.P. Chacko, and P.C.M. van Zijl. Three-dimensional tracking of axonal projections in the

brain by magnetic resonance imaging. Ann. Neurol., 45(2):265–269, 1999.

[40] G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys, 33(1):31–88, 2001.

[41] N. Potha, M. Maragoudakis, and D. Lyras. A biology-inspired, data mining framework for extracting patterns in

sexual cyberbullying data. Knowl.-Based Syst., 96:134–155, 2016.

[42] F. Rodrigues, I. Markou, and F.C. Pereira. Combining time-series and textual data for taxi demand prediction in

event areas: A deep learning approach. Information Fusion, 49:120–129, 2019.

[43] S. Sargsyan, S. Kurmangaleev, A. Belevantsev, and A. Avetisyan. Scalable and accurate detection of code clones.

Programming and Computer Software, 42(1):27–33, 2016.

[44] J. Serr and J.Ll. Arcos. An empirical evaluation of similarity measures for time series classification. Knowl.-Based

Syst., 67:305–314, 2014.

[45] D. Simon. Evolutionary optimization algorithms. John Wiley & Sons, 2013.

[46] T. Smith and M. Waterman. Identification of common molecular subsequences. J. Mol. Biol., 147:195–197, 1981.

[47] C. Stamile, F. Cauteruccio, G. Terracina, D. Ursino, G. Kocevar, and D. Sappey-Marinier. A model-guided string-

based approach to white matter fiber-bundles extraction. In Brain Informatics and Health - 8th International

Conference, BIH 2015, London, UK, August 30 - September 2, 2015. Proceedings, volume 9250 of LNCS, pages

135–144. Springer, 2015.

[48] J.M. Vidal, M.A. Sotelo Monge, and L.J. Garca Villalba. A novel pattern recognition system for detecting android

malware by analyzing suspicious boot sequences. Knowl.-Based Syst., 150:198–217, 2018.

[49] S. Wagner, G. Kronberger, A. Beham, M. Kommenda, A. Scheibenpflug, E. Pitzer, S. Vonolfen, M. Kofler, S. Win-

kler, V. Dorfer, and M. Affenzeller. Advanced Methods and Applications in Computational Intelligence, volume 6 of

Topics in Intelligent Engineering and Informatics, chapter Architecture and Design of the HeuristicLab Optimiza-

tion Environment, pages 197–261. Springer, 2014.

[50] M.S. Waterman, T.F. Smith, and W.A. Beyer. Some biological sequence metrics. Adv. Math., 20(3):367–387, 1976.

[51] M. Wilson, C.R. Tench, P.S. Morgan, and L.D. Blumhardt. Pyramidal tract mapping by diffusion tensor magnetic

resonance imaging in multiple sclerosis: improving correlations with disability. J. Neurol. Neurosurg. Psychiatry,

74(2):203–207, 2003.

[52] Y. Yao, A. Sharma, L. Golubchik, and R. Govindan. Online anomaly detection for sensor systems: A simple and

efficient approach. Perform. Eval., 67(11):1059–1075, 2010.

[53] G.P. Zhang. Time series forecasting using a hybrid arima and neural network model. Neurocomputing, 50:159–175,

2003.

[54] S. Zhang, S. Correia, and D. H. Laidlaw. Identifying white-matter fiber bundles in dti data using an automated

proximity-based fiber-clustering method. IEEE Trans. Vis. Comput. Graph., 14(5):1044–1053, Sept 2008.

[55] Y. Zhang and J. Jiang. Bibliographical review on reconfigurable fault-tolerant control systems. Annual reviews in

control, 32(2):229–252, 2008.

36

