Today's society is largely based on infrastructures that guarantee goods, transport and communication networks. Their safeguarding and saving of resources for their operation is becoming increasingly important in the field of building engineering. For this reason, research on building materials is increasingly focused on the re-use of recycled industrial by-products, for a more sustainable construction industry. Materials engineering, thanks to the development of high performance nanomaterials, offers several ideas for the construction of multifunctional building materials. The present research aims to develop multifunctional hydraulic binder-based composite with the addition of recycled carbon-based fillers and fibers obtained from industrial by-products. The enhancement of mechanical strength and durability of the composites have been studied, together with their de-polluting and photocatalytic properties. The electrical properties of the mixtures have been studied to analyze the Electromagnetic interference shielding capability of carbon-based admixtures, and to provide a basis for the development of strain-sensing materials for structural health monitoring. Pastes and mortars containing graphene or other commercial and recycled carbon-based fillers (from 0.25 to 4.0% on binder weight) and fibers (from 0.05 to 1.6% by mixture volume) were realized. Tests of mechanical resistance and durability were performed on the mixtures, together with test of pollutants adsorption, photocatalysis and electrical resistivity. Strain-sensitivity has been evaluated by measuring the fractional change in resistivity of the specimens subjected to quasi-static compressive loads. Results show that the addition of recycled carbon-based fillers leads to a refinement of the matrix microstructure, increasing the mechanical strength and decreasing the water permeability. The addition of recycled carbon micro-fibers leads to an increase in flexural strengths and to a noticeable increase in electrical conductivity (up to several orders of magnitude compared to the traditional cementitious materials).

La società moderna è in gran parte fondata sulle infrastrutture che garantiscono la fornitura di beni, trasporti e mezzi di comunicazione. La loro salvaguardia e il risparmio delle risorse necessarie per il loro funzionamento è di crescente importanza per l’Ingegneria civile. Per questo motivo, la ricerca sui materiali da costruzione si sta concentrando sul riutilizzo di sottoprodotti industriali riciclati, per un’industria edilizia più sostenibile. L’Ingegneria dei materiali, grazie al recente sviluppo di nanomateriali ad alte prestazioni, propone molteplici spunti per la realizzazione di materiali strutturali multifunzionali. La presente ricerca mira a sviluppare compositi multifunzionali a base di leganti idraulici, con l'aggiunta di filler e fibre a base di carbonio di origine riciclata, ottenuti da sottoprodotti industriali. Sono stati studiati i miglioramenti in termini di resistenze meccaniche e di durabilità, nonché le loro proprietà disinquinanti e fotocatalitiche. Le proprietà elettriche delle miscele sono state studiate, per la valutazione delle capacità di schermatura delle interferenze elettromagnetiche delle aggiunte, e come base di studio per lo sviluppo di materiali auto-sensibili per il monitoraggio strutturale. Sono state realizzate paste e malte contenenti grafene o altri filler a base di carbonio di origine riciclata (da 0.25 a 4% sul peso del legante) e fibre di carbonio (da 0.05 a 1.6% sul volume della miscela). Sui composti sono stati eseguiti test di resistenza meccanica e durabilità, nonché test di adsorbimento degli inquinanti, di fotocatalitisi e di resistività elettrica. La sensibilità elettrica alla deformazione è stata valutata misurando la variazione percentuale della resistività su provini soggetti a carichi di compressione semi-statici. I risultati mostrano che l’aggiunta di filler a base di carbonio riciclati porta a un raffinamento della microstruttura della matrice e a un incremento delle resistenze meccaniche, nonché a un decremento della permeabilità all’acqua. L’aggiunta di micro-fibre di carbonio riciclate porta a un incremento delle resistenze meccaniche a flessione, e a un notevole aumento della conducibilità elettrica (di svariati ordini di grandezza, rispetto ai tradizionali materiali cementizi).

Comparison between Commercial and Recycled Carbon-Based Fillers and Fibers for the Development of Smart and Sustainable Multifunctional Mortars / Belli, Alberto. - (2019 Feb 25).

Comparison between Commercial and Recycled Carbon-Based Fillers and Fibers for the Development of Smart and Sustainable Multifunctional Mortars

BELLI, ALBERTO
2019-02-25

Abstract

Today's society is largely based on infrastructures that guarantee goods, transport and communication networks. Their safeguarding and saving of resources for their operation is becoming increasingly important in the field of building engineering. For this reason, research on building materials is increasingly focused on the re-use of recycled industrial by-products, for a more sustainable construction industry. Materials engineering, thanks to the development of high performance nanomaterials, offers several ideas for the construction of multifunctional building materials. The present research aims to develop multifunctional hydraulic binder-based composite with the addition of recycled carbon-based fillers and fibers obtained from industrial by-products. The enhancement of mechanical strength and durability of the composites have been studied, together with their de-polluting and photocatalytic properties. The electrical properties of the mixtures have been studied to analyze the Electromagnetic interference shielding capability of carbon-based admixtures, and to provide a basis for the development of strain-sensing materials for structural health monitoring. Pastes and mortars containing graphene or other commercial and recycled carbon-based fillers (from 0.25 to 4.0% on binder weight) and fibers (from 0.05 to 1.6% by mixture volume) were realized. Tests of mechanical resistance and durability were performed on the mixtures, together with test of pollutants adsorption, photocatalysis and electrical resistivity. Strain-sensitivity has been evaluated by measuring the fractional change in resistivity of the specimens subjected to quasi-static compressive loads. Results show that the addition of recycled carbon-based fillers leads to a refinement of the matrix microstructure, increasing the mechanical strength and decreasing the water permeability. The addition of recycled carbon micro-fibers leads to an increase in flexural strengths and to a noticeable increase in electrical conductivity (up to several orders of magnitude compared to the traditional cementitious materials).
25-feb-2019
La società moderna è in gran parte fondata sulle infrastrutture che garantiscono la fornitura di beni, trasporti e mezzi di comunicazione. La loro salvaguardia e il risparmio delle risorse necessarie per il loro funzionamento è di crescente importanza per l’Ingegneria civile. Per questo motivo, la ricerca sui materiali da costruzione si sta concentrando sul riutilizzo di sottoprodotti industriali riciclati, per un’industria edilizia più sostenibile. L’Ingegneria dei materiali, grazie al recente sviluppo di nanomateriali ad alte prestazioni, propone molteplici spunti per la realizzazione di materiali strutturali multifunzionali. La presente ricerca mira a sviluppare compositi multifunzionali a base di leganti idraulici, con l'aggiunta di filler e fibre a base di carbonio di origine riciclata, ottenuti da sottoprodotti industriali. Sono stati studiati i miglioramenti in termini di resistenze meccaniche e di durabilità, nonché le loro proprietà disinquinanti e fotocatalitiche. Le proprietà elettriche delle miscele sono state studiate, per la valutazione delle capacità di schermatura delle interferenze elettromagnetiche delle aggiunte, e come base di studio per lo sviluppo di materiali auto-sensibili per il monitoraggio strutturale. Sono state realizzate paste e malte contenenti grafene o altri filler a base di carbonio di origine riciclata (da 0.25 a 4% sul peso del legante) e fibre di carbonio (da 0.05 a 1.6% sul volume della miscela). Sui composti sono stati eseguiti test di resistenza meccanica e durabilità, nonché test di adsorbimento degli inquinanti, di fotocatalitisi e di resistività elettrica. La sensibilità elettrica alla deformazione è stata valutata misurando la variazione percentuale della resistività su provini soggetti a carichi di compressione semi-statici. I risultati mostrano che l’aggiunta di filler a base di carbonio riciclati porta a un raffinamento della microstruttura della matrice e a un incremento delle resistenze meccaniche, nonché a un decremento della permeabilità all’acqua. L’aggiunta di micro-fibre di carbonio riciclate porta a un incremento delle resistenze meccaniche a flessione, e a un notevole aumento della conducibilità elettrica (di svariati ordini di grandezza, rispetto ai tradizionali materiali cementizi).
Cement; Mortar; Concrete; Paste; Lime; Graphene; Carbon-based fillers; Gasification char; Foundry sand; Carbon fibers; Steel fibers; Photocatalysis; Resistivity; Multifunctional cement-based composite; Self-sensing; Structural Health Monitoring; Industrial By-products; Industrial By-products; Recycling
File in questo prodotto:
File Dimensione Formato  
Tesi_Belli.pdf

Open Access dal 26/08/2020

Descrizione: Tesi_Belli.pdf
Tipologia: Tesi di dottorato
Licenza d'uso: Creative commons
Dimensione 30.85 MB
Formato Adobe PDF
30.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/263335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact