In the last two decades, bio-inspired solutions have been thoroughly investigated as a source of efficiency and manoeuvrability improvement for underwater robots. By means of advanced simulation techniques, researchers from all over the world are trying to quantify the propulsive forces generated by biological thrusters. However, in order to compute the resulting motion of the robot, such forces must be integrated in a multi-body model, which accounts for the mass distribution and for the hydrodynamic effects on a rigid body moving in a fluid. In order to address this objective, the authors devised a framework to integrate the long-lasting fluid dynamics simulations with the real-time control techniques required to manage autonomous navigation. The adaptability of the proposed method has been tested by computing the propulsive performance of a bioinspired underwater vehicle manufactured by the authors.

Multi-body analysis of a bio-inspired underwater robot / Costa, Daniele; Palmieri, Giacomo; Scaradozzi, David; Callegari, Massimo. - STAMPA. - 68:(2019), pp. 240-248. [10.1007/978-3-030-03320-0_26]

Multi-body analysis of a bio-inspired underwater robot

Costa, Daniele
;
Palmieri, Giacomo;Scaradozzi, David;Callegari, Massimo
2019-01-01

Abstract

In the last two decades, bio-inspired solutions have been thoroughly investigated as a source of efficiency and manoeuvrability improvement for underwater robots. By means of advanced simulation techniques, researchers from all over the world are trying to quantify the propulsive forces generated by biological thrusters. However, in order to compute the resulting motion of the robot, such forces must be integrated in a multi-body model, which accounts for the mass distribution and for the hydrodynamic effects on a rigid body moving in a fluid. In order to address this objective, the authors devised a framework to integrate the long-lasting fluid dynamics simulations with the real-time control techniques required to manage autonomous navigation. The adaptability of the proposed method has been tested by computing the propulsive performance of a bioinspired underwater vehicle manufactured by the authors.
2019
Mechanisms and Machine Science
978-3-030-03319-4
978-3-030-03320-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/263021
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact