Uterine leiomyomas (fibroids or myomas) are the most common benign tumors of premenopausal women and new medical treatments are needed. This study aimed to determine the effects of omega-3 fatty acids on the lipid profile, membrane architecture and gene expression patterns of extracellular matrix components (collagen1A1, fibronectin, versican, or activin A), mechanical signaling (integrin β1, FAK, and AKAP13), sterol regulatory molecules (ABCG1, ABCA1, CAV1, and SREBF2), and mitochondrial enzyme (CYP11A1) in myometrial and leiomyoma cells. Myometrial tissues had a higher amount of arachidonic acid than leiomyoma tissues while leiomyoma tissues had a higher level of linoleic acid than myometrial tissues. Treatment of primary myometrial and leiomyoma cells with eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) reduced the monounsaturated fatty acid (MUFA) content and increased the polyunsaturated fatty acid (PUFA) content in both cell types. Myometrial and leiomyoma cell membranes were in the liquid-crystalline phase, but EPA- and DHA-treated cells had decreased membrane fluidity. While we found no changes in the mRNA expression of ECM components, EPA and DHA treatment reduced levels of ABCG1, ABCA1, and AKAP13 in both cell types. EPA and DHA also reduced FAK and CYP11A1 expression in myometrial cells. The ability of omega-3 fatty acids to remodel membrane architecture and downregulate the expression of genes involved in mechanical signaling and lipid accumulation in leiomyoma cells offers to further investigate this compound as preventive and/or therapeutic option.

Omega-3 fatty acids modulate the lipid profile, membrane architecture, and gene expression of leiomyoma cells / Islam, Md Soriful; Castellucci, Clara; Fiorini, Rosamaria; Greco, Stefania; Gagliardi, Riccardo; Zannotti, Alessandro; Giannubilo, Stefano R; Ciavattini, Andrea; Frega, Natale G; Pacetti, Deborah; Ciarmela, Pasquapina. - In: JOURNAL OF CELLULAR PHYSIOLOGY. - ISSN 0021-9541. - (2018). [10.1002/jcp.26537]

Omega-3 fatty acids modulate the lipid profile, membrane architecture, and gene expression of leiomyoma cells

Islam, Md Soriful;Castellucci, Clara;Fiorini, Rosamaria;Greco, Stefania;Gagliardi, Riccardo;Giannubilo, Stefano R;Ciavattini, Andrea;Frega, Natale G;Pacetti, Deborah;Ciarmela, Pasquapina
2018-01-01

Abstract

Uterine leiomyomas (fibroids or myomas) are the most common benign tumors of premenopausal women and new medical treatments are needed. This study aimed to determine the effects of omega-3 fatty acids on the lipid profile, membrane architecture and gene expression patterns of extracellular matrix components (collagen1A1, fibronectin, versican, or activin A), mechanical signaling (integrin β1, FAK, and AKAP13), sterol regulatory molecules (ABCG1, ABCA1, CAV1, and SREBF2), and mitochondrial enzyme (CYP11A1) in myometrial and leiomyoma cells. Myometrial tissues had a higher amount of arachidonic acid than leiomyoma tissues while leiomyoma tissues had a higher level of linoleic acid than myometrial tissues. Treatment of primary myometrial and leiomyoma cells with eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) reduced the monounsaturated fatty acid (MUFA) content and increased the polyunsaturated fatty acid (PUFA) content in both cell types. Myometrial and leiomyoma cell membranes were in the liquid-crystalline phase, but EPA- and DHA-treated cells had decreased membrane fluidity. While we found no changes in the mRNA expression of ECM components, EPA and DHA treatment reduced levels of ABCG1, ABCA1, and AKAP13 in both cell types. EPA and DHA also reduced FAK and CYP11A1 expression in myometrial cells. The ability of omega-3 fatty acids to remodel membrane architecture and downregulate the expression of genes involved in mechanical signaling and lipid accumulation in leiomyoma cells offers to further investigate this compound as preventive and/or therapeutic option.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/256451
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 14
social impact