Chestnut blight is caused by the fungus Cryphonectria parasitica. As one of the most ecologically important diseases of Castanea spp., C. parasitica can rapidly kill trees. In Europe, mitigation of disease severity took place spontaneously through colonization of C. parasitica by mycoviruses, which reduced the virulence of the fungus. In the framework of a survey, 138 C. parasitica isolates were identified, and virulent/hypovirulent phenotypes were determined through morphological properties and pathogenicity tests. For a pool of four hypovirulent isolates, dsRNA was extracted, cDNA synthesised, and a library subjected to next-generation sequencing. The bioinformatics analysis allowed detecting and reconstructing the complete genome of Cryphonectria hypovirus 1 (CHV-1), denoted as CHV-1 Marche, as well excluding the presence of any other ssRNA and dsRNA viral sequence. When compared to the available genomes of other hypoviruses that affected the virulence of C. parasitica, available in databases, CHV-1 Marche showed some nucleotide diversity. The approach used in this study was effective to explore the virome inside a pool of hypovirulent C. parasitica isolates. In conclusion, next-generation sequencing allowed us to exclude the presence of any other ssRNA and dsRNA viruses infecting the fungus and determine CHV-1 as the only responsible of hypovirulence of C. parasitica in the analysed samples.

Phenotypic and molecular investigations on hypovirulent Cryphonectria parasitica in Italy / Murolo, S.; De Miccolis Angelini, R. M.; Faretra, F.; Romanazzi, G.. - In: PLANT DISEASE. - ISSN 0191-2917. - 102:(2018), pp. 540-545. [10.1094/PDIS-04-17-0517-RE]

Phenotypic and molecular investigations on hypovirulent Cryphonectria parasitica in Italy

Murolo S.;Romanazzi G.
2018-01-01

Abstract

Chestnut blight is caused by the fungus Cryphonectria parasitica. As one of the most ecologically important diseases of Castanea spp., C. parasitica can rapidly kill trees. In Europe, mitigation of disease severity took place spontaneously through colonization of C. parasitica by mycoviruses, which reduced the virulence of the fungus. In the framework of a survey, 138 C. parasitica isolates were identified, and virulent/hypovirulent phenotypes were determined through morphological properties and pathogenicity tests. For a pool of four hypovirulent isolates, dsRNA was extracted, cDNA synthesised, and a library subjected to next-generation sequencing. The bioinformatics analysis allowed detecting and reconstructing the complete genome of Cryphonectria hypovirus 1 (CHV-1), denoted as CHV-1 Marche, as well excluding the presence of any other ssRNA and dsRNA viral sequence. When compared to the available genomes of other hypoviruses that affected the virulence of C. parasitica, available in databases, CHV-1 Marche showed some nucleotide diversity. The approach used in this study was effective to explore the virome inside a pool of hypovirulent C. parasitica isolates. In conclusion, next-generation sequencing allowed us to exclude the presence of any other ssRNA and dsRNA viruses infecting the fungus and determine CHV-1 as the only responsible of hypovirulence of C. parasitica in the analysed samples.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/252841
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact