This study proposes Machine Learning methodologies to evaluate clinical indexes available for the monitoring of cognitive and motor diseases. These indexes, that are correlated to human motion analysis, allow to support both patients and medical staff during the rehabilitation period at home. This study has been conducted in the context of a future need of tele-assistance systems, due to the growing aging of the population and the requirement of reducing costs. The monitoring system is equipped with Microsoft Kinect sensor, allowing to track position and orientation coordinates of skeleton joints mapped on the subject’s body. The analysis of this information has been possible by Machine Learning techniques. This instrument allows medical staff to monitor remotely patients at home, avoiding problems related to the transport in a clinical center or the influence of a supervisor during the test performance. Exercises evaluation has been obtained assigning a quantitative score to each control factor identified on the base of clinical specifications defined by clinicians. The study and exercises acquisitions have been conducted with the collaboration of doctors and physiotherapists of Neuro-rehabilitation clinic of Torrette hospital in Ancona. A visual or audio feedback to correct wrong postures of patients and a report for physiotherapists about exercise performances are included. Moreover, this study analyses how is possible to obtain an assessment of the correctness of daily living activities for cognitive impairments and of rehabilitation exercises performance well correlated with those given by clinicians.
Questo studio propone metodologie di Machine Learning per valutare indici clinici utili al monitoraggio di malattie che comportano disturbi cognitivi e motori. Tali indici, che derivano dall’analisi del movimento umano, permettono di supportare sia i pazienti che il personale medico nei periodi di riabilitazione a casa. Il lavoro è stato condotto nel contesto di una crescente necessità di sistemi di tele-assistenza, dovuta al progressivo invecchiamento della popolazione e alla richiesta di riduzione dei costi di assistenza. Il sistema di monitoraggio si avvale del sensore Microsoft Kinect, che consente di tracciare le coordinate di posizione ed orientazione dei giunti dello skeleton, mappato sul corpo del soggetto in esame. L’analisi di queste informazioni è stata possibile attraverso lo sviluppo di tecniche di Machine Learning. Questo sistema a basso costo permette all’equipe medica di monitorare da remoto il paziente a casa, evitando problemi relativi ad un eventuale trasferimento in clinica o all’influenza di un valutatore esterno durante lo svolgimento del test. Lo studio e la sperimentazione sono stati supportati dalla collaborazione di medici e fisioterapisti della clinica di Neuro-riabilitazione dell’ospedale di Torrette di Ancona. La valutazione degli esercizi è stata ottenuta attribuendo un punteggio quantitativo a ciascun fattore di controllo, individuato sulla base delle specifiche cliniche definite dagli specialisti. Sono stati inoltre inclusi un feedback visivo o uditivo per correggere eventuali posture errate dei pazienti e un report per i fisioterapisti riguardo lo svolgimento degli esercizi proposti. Inoltre, lo studio analizza come sia possibile ottenere la stessa valutazione con diverse tecniche di Machine Learning. I risultati dimostrano come le metodologie proposte consentono di ottenere una valutazione, ben correlata con quella elaborata dai clinici, della bontà dello svolgimento degli esercizi riabilitativi e cognitivi.
Monitoring and analysis of movement in subjects with cognitive and motor diseases by Machine Learning methods / Iarlori, Sabrina. - (2016 Mar 04).
Monitoring and analysis of movement in subjects with cognitive and motor diseases by Machine Learning methods
Iarlori, Sabrina
2016-03-04
Abstract
This study proposes Machine Learning methodologies to evaluate clinical indexes available for the monitoring of cognitive and motor diseases. These indexes, that are correlated to human motion analysis, allow to support both patients and medical staff during the rehabilitation period at home. This study has been conducted in the context of a future need of tele-assistance systems, due to the growing aging of the population and the requirement of reducing costs. The monitoring system is equipped with Microsoft Kinect sensor, allowing to track position and orientation coordinates of skeleton joints mapped on the subject’s body. The analysis of this information has been possible by Machine Learning techniques. This instrument allows medical staff to monitor remotely patients at home, avoiding problems related to the transport in a clinical center or the influence of a supervisor during the test performance. Exercises evaluation has been obtained assigning a quantitative score to each control factor identified on the base of clinical specifications defined by clinicians. The study and exercises acquisitions have been conducted with the collaboration of doctors and physiotherapists of Neuro-rehabilitation clinic of Torrette hospital in Ancona. A visual or audio feedback to correct wrong postures of patients and a report for physiotherapists about exercise performances are included. Moreover, this study analyses how is possible to obtain an assessment of the correctness of daily living activities for cognitive impairments and of rehabilitation exercises performance well correlated with those given by clinicians.File | Dimensione | Formato | |
---|---|---|---|
tesi_iarlori.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato
Licenza d'uso:
Non specificato
Dimensione
17.15 MB
Formato
Adobe PDF
|
17.15 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.