Abstract Glyoxalase II, the second of 2 enzymes in the glyoxalase system, is a hydroxyacylglutathione hydrolase that catalyses the hydrolysis of S-d-lactoylglutathione to form d-lactic acid and glutathione, which is released from the active site. The tripeptide glutathione is the major sulfhydryl antioxidant and has been shown to control several functions, including S-glutathionylation of proteins. S-Glutathionylation is a way for the cells to store reduced glutathione during oxidative stress, or to protect protein thiol groups from irreversible oxidation, and few enzymes involved in protein S-glutathionylation have been found to date. In this work, the enzyme glyoxalase II and its substrate S-d-lactoylglutathione were incubated with malate dehydrogenase or with actin, resulting in a glutathionylation reaction. Glyoxalase II was also submitted to docking studies. Computational data presented a high propensity of the enzyme to interact with malate dehydrogenase or actin through its catalytic site and further in silico investigation showed a high folding stability of glyoxalase II toward its own reaction product glutathione both protonated and unprotonated. This study suggests that glyoxalase II, through a specific interaction of its catalytic site with target proteins, could be able to perform a rapid and specific protein S-glutathionylation using its natural substrate S-d-lactoylglutathione. SIGNIFICANCE: This article reports for the first time a possible additional role of Glo2 that, after interacting with a target protein, is able to promote S-glutathionylation using its natural substrate SLG, a glutathione derived compound. In this perspective, Glo2 can play a new important regulatory role inS-glutathionylation, acquiring further significance in cellular post-translational modifications of proteins.

A possible S-glutathionylation of specific proteins by glyoxalase II: An in vitro and in silico study / Ercolani, Luisa; Scire', Andrea Antonino; Galeazzi, R; Massaccesi, Luca; Cianfruglia, L; Amici, A; Piva, F; Urbanelli, L; Emiliani, C; Principato, G; Armeni, T.. - In: CELL BIOCHEMISTRY AND FUNCTION. - ISSN 1099-0844. - STAMPA. - 34:8(2016), pp. 620-627. [10.1002/cbf.3236.]

A possible S-glutathionylation of specific proteins by glyoxalase II: An in vitro and in silico study.

ERCOLANI, LUISA;SCIRE', Andrea Antonino;Galeazzi, R;MASSACCESI, LUCA;Cianfruglia, L;Amici, A;Piva, F;Principato, G;Armeni, T.
2016-01-01

Abstract

Abstract Glyoxalase II, the second of 2 enzymes in the glyoxalase system, is a hydroxyacylglutathione hydrolase that catalyses the hydrolysis of S-d-lactoylglutathione to form d-lactic acid and glutathione, which is released from the active site. The tripeptide glutathione is the major sulfhydryl antioxidant and has been shown to control several functions, including S-glutathionylation of proteins. S-Glutathionylation is a way for the cells to store reduced glutathione during oxidative stress, or to protect protein thiol groups from irreversible oxidation, and few enzymes involved in protein S-glutathionylation have been found to date. In this work, the enzyme glyoxalase II and its substrate S-d-lactoylglutathione were incubated with malate dehydrogenase or with actin, resulting in a glutathionylation reaction. Glyoxalase II was also submitted to docking studies. Computational data presented a high propensity of the enzyme to interact with malate dehydrogenase or actin through its catalytic site and further in silico investigation showed a high folding stability of glyoxalase II toward its own reaction product glutathione both protonated and unprotonated. This study suggests that glyoxalase II, through a specific interaction of its catalytic site with target proteins, could be able to perform a rapid and specific protein S-glutathionylation using its natural substrate S-d-lactoylglutathione. SIGNIFICANCE: This article reports for the first time a possible additional role of Glo2 that, after interacting with a target protein, is able to promote S-glutathionylation using its natural substrate SLG, a glutathione derived compound. In this perspective, Glo2 can play a new important regulatory role inS-glutathionylation, acquiring further significance in cellular post-translational modifications of proteins.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/241781
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact