This paper presents a technique for parametric model estimation of the motor unit action potential (MUAP) from the surface electromyography (sEMG) signal by using homomorphic deconvolution. The cepstrum-based deconvolution removes the effect of the stochastic impulse train, which originates the sEMG signal, from the power spectrum of sEMG signal itself. In this way only information on MUAP shape and amplitude were maintained and then used to estimate the parameters of a time-domain model of the MUAP itself. In order to validate the effectiveness of this technique, sEMG signals recorded during several biceps curl exercises have been used for MUAP amplitude and time scale estimation. The parameters so extracted as functions of time were used to evaluate muscle fatigue showing a good agreement with previously published results.

Homomorphic Deconvolution for MUAP Estimation from Surface EMG Signals / Biagetti, Giorgio; Crippa, Paolo; Orcioni, Simone; Turchetti, Claudio. - In: IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. - ISSN 2168-2194. - ELETTRONICO. - 21:2(2017), pp. 328-338. [10.1109/JBHI.2016.2530943]

Homomorphic Deconvolution for MUAP Estimation from Surface EMG Signals

BIAGETTI, Giorgio;CRIPPA, Paolo;ORCIONI, Simone
;
TURCHETTI, Claudio
2017-01-01

Abstract

This paper presents a technique for parametric model estimation of the motor unit action potential (MUAP) from the surface electromyography (sEMG) signal by using homomorphic deconvolution. The cepstrum-based deconvolution removes the effect of the stochastic impulse train, which originates the sEMG signal, from the power spectrum of sEMG signal itself. In this way only information on MUAP shape and amplitude were maintained and then used to estimate the parameters of a time-domain model of the MUAP itself. In order to validate the effectiveness of this technique, sEMG signals recorded during several biceps curl exercises have been used for MUAP amplitude and time scale estimation. The parameters so extracted as functions of time were used to evaluate muscle fatigue showing a good agreement with previously published results.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/234480
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 20
social impact