Hox and ParaHox genes are involved in patterning the anterior-posterior body axis in metazoans during embryo development. Body plan evolution and diversification are affected by variations in the number and sequence of Hox and ParaHox genes, as well as by their expression patterns. For this reason Hox and ParaHox gene investigation in the phylum Mollusca is of great interest, as this is one of the most important taxa of protostomes, characterized by a high morphological diversity. The comparison of the works reviewed here indicates that species of molluscs, belonging to different classes, share a similar composition of Hox and ParaHox genes. Therefore evidence suggests that the wide morphological diversity of this taxon could be ascribed to differences in Hox gene interactions and expressions and changes in the Hox downstream genes rather than to Hox cluster composition. Moreover the data available on Hox and ParaHox genes in molluscs compared with those of other Lophotrochozoa shed light on the complex and controversial evolutionary histories that these genes have undergone within protostomes.
Hox and ParaHox genes: A review on molluscs / Biscotti, MARIA ASSUNTA; Canapa, Adriana; Forconi, Mariko'; Barucca, Marco. - In: GENESIS. - ISSN 1526-954X. - ELETTRONICO. - 52:(2014), pp. 935-945. [10.1002/dvg.22839]
Hox and ParaHox genes: A review on molluscs
BISCOTTI, MARIA ASSUNTA;CANAPA, Adriana;FORCONI, MARIKO';BARUCCA, MARCO
2014-01-01
Abstract
Hox and ParaHox genes are involved in patterning the anterior-posterior body axis in metazoans during embryo development. Body plan evolution and diversification are affected by variations in the number and sequence of Hox and ParaHox genes, as well as by their expression patterns. For this reason Hox and ParaHox gene investigation in the phylum Mollusca is of great interest, as this is one of the most important taxa of protostomes, characterized by a high morphological diversity. The comparison of the works reviewed here indicates that species of molluscs, belonging to different classes, share a similar composition of Hox and ParaHox genes. Therefore evidence suggests that the wide morphological diversity of this taxon could be ascribed to differences in Hox gene interactions and expressions and changes in the Hox downstream genes rather than to Hox cluster composition. Moreover the data available on Hox and ParaHox genes in molluscs compared with those of other Lophotrochozoa shed light on the complex and controversial evolutionary histories that these genes have undergone within protostomes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.