In this paper, the problem of designing a control law in case of rotor failure in quadrotor vehicles is addressed. First, a nonlinear mathematical model for a quadrotor vehicle is derived, which includes translational and rotational dynamics. Then a robust feedback linearization controller is developed, which sacrifices the controllability of the yaw state due to rotor failure to linearize the closed-loop system around a working point, where roll and pitch angles are zero and the angular speed around the vertical axis is a nonzero constant. An H∞ loop shaping technique is adopted to achieve regulation of these variables around the chosen working point. Finally, an outer loop is proposed for achieving control of the linear displacement under the assumption of small angles approximation for the pitch and roll angles. The proposed control strategy allows the vehicle to use the remaining three functional rotors to enter a constant angular speed around its vertical axis, granting stability and representing an effective way to deal with a rotor failure in quadrotor vehicles. Read More: http://arc.aiaa.org/doi/abs/10.2514/1.59869

Flight Control of a Quadrotor Vehicle Subsequent to a Rotor Failure / Alexander, Lanzon; Freddi, Alessandro; Longhi, Sauro. - In: JOURNAL OF GUIDANCE CONTROL AND DYNAMICS. - ISSN 0731-5090. - STAMPA. - Vol. 37, No. 2 (2014):(2014), pp. 580-591. [10.2514/1.59869]

Flight Control of a Quadrotor Vehicle Subsequent to a Rotor Failure

FREDDI, ALESSANDRO;LONGHI, SAURO
2014-01-01

Abstract

In this paper, the problem of designing a control law in case of rotor failure in quadrotor vehicles is addressed. First, a nonlinear mathematical model for a quadrotor vehicle is derived, which includes translational and rotational dynamics. Then a robust feedback linearization controller is developed, which sacrifices the controllability of the yaw state due to rotor failure to linearize the closed-loop system around a working point, where roll and pitch angles are zero and the angular speed around the vertical axis is a nonzero constant. An H∞ loop shaping technique is adopted to achieve regulation of these variables around the chosen working point. Finally, an outer loop is proposed for achieving control of the linear displacement under the assumption of small angles approximation for the pitch and roll angles. The proposed control strategy allows the vehicle to use the remaining three functional rotors to enter a constant angular speed around its vertical axis, granting stability and representing an effective way to deal with a rotor failure in quadrotor vehicles. Read More: http://arc.aiaa.org/doi/abs/10.2514/1.59869
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/204123
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 142
  • ???jsp.display-item.citation.isi??? 105
social impact