A sensor was developed to quantitatively measure perturbations which change the volume of a wave chaotic cavity while leaving its shape intact. The sensors work in the time domain by using either scattering fidelity of the transmitted signals or time-reversal mirrors. The sensors were tested experimentally by inducing volume changing perturbations to a 1 m3 mixed chaotic and regular billiard system. Perturbations that caused a volume change that is as small as 54 parts in a million were quantitatively measured. These results were obtained by using electromagnetic waves with a wavelength of about 5 cm; therefore, the sensor is sensitive to extreme sub-wavelength changes of the boundaries of a cavity. The experimental results were compared with finite difference time-domain simulation results, and good agreement was found. Furthermore, the sensor was tested using a frequency-domain approach on a numerical model of the star graph, which is a representative wave chaotic system. These results open up interesting applications such as: monitoring the spatial uniformity of the temperature of a homogeneous cavity during heating up/cooling down procedures, verifying the uniform displacement of a fluid inside a wave chaotic cavity by another fluid, etc.

Quantifying volume changing perturbations in a wave chaotic system / Biniyam Tesfaye, Taddese; Gradoni, Gabriele; Moglie, Franco; Thomas M., Antonsen; Edward, Ott; Steven M., Anlage. - In: NEW JOURNAL OF PHYSICS. - ISSN 1367-2630. - ELETTRONICO. - 15:(2013), p. 023025. [10.1088/1367-2630/15/2/023025]

Quantifying volume changing perturbations in a wave chaotic system

GRADONI, GABRIELE;MOGLIE, FRANCO;
2013-01-01

Abstract

A sensor was developed to quantitatively measure perturbations which change the volume of a wave chaotic cavity while leaving its shape intact. The sensors work in the time domain by using either scattering fidelity of the transmitted signals or time-reversal mirrors. The sensors were tested experimentally by inducing volume changing perturbations to a 1 m3 mixed chaotic and regular billiard system. Perturbations that caused a volume change that is as small as 54 parts in a million were quantitatively measured. These results were obtained by using electromagnetic waves with a wavelength of about 5 cm; therefore, the sensor is sensitive to extreme sub-wavelength changes of the boundaries of a cavity. The experimental results were compared with finite difference time-domain simulation results, and good agreement was found. Furthermore, the sensor was tested using a frequency-domain approach on a numerical model of the star graph, which is a representative wave chaotic system. These results open up interesting applications such as: monitoring the spatial uniformity of the temperature of a homogeneous cavity during heating up/cooling down procedures, verifying the uniform displacement of a fluid inside a wave chaotic cavity by another fluid, etc.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/86659
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact