The paper presents a numerical model for the analysis of the soil–structure kinematic interaction of single piles and pile groups embedded in layered soil deposits during seismic actions. A finite element model is considered for the pile group and the soil is assumed to be a Winkler-type medium. The pile–soil–pile interaction and the radiation problem are accounted for by means of elastodynamic Green’s functions. Condensation of the problem permits a consistent and straightforward derivation of both the impedance functions and the foundation input motion, which are necessary to perform the inertial soil–structure interaction analyses. The model proposed allows calculating the internal forces induced by soil–pile and pile-to-pile interactions. Comparisons with data available in literature are made to study the convergence and validate the model. An application to a realistic pile foundation is given to demonstrate the potential of the model to catch the dynamic behaviour of the soil–foundation system and the stress resultants in each pile.
A model for the 3D kinematic interaction analysis of pile groups in layered soils / Dezi, F.; Carbonari, Sandro; Leoni, G.. - In: EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS. - ISSN 0098-8847. - STAMPA. - 38:11(2009), pp. 1281-1305. [10.1002/eqe.892]
A model for the 3D kinematic interaction analysis of pile groups in layered soils
CARBONARI, SANDRO;
2009-01-01
Abstract
The paper presents a numerical model for the analysis of the soil–structure kinematic interaction of single piles and pile groups embedded in layered soil deposits during seismic actions. A finite element model is considered for the pile group and the soil is assumed to be a Winkler-type medium. The pile–soil–pile interaction and the radiation problem are accounted for by means of elastodynamic Green’s functions. Condensation of the problem permits a consistent and straightforward derivation of both the impedance functions and the foundation input motion, which are necessary to perform the inertial soil–structure interaction analyses. The model proposed allows calculating the internal forces induced by soil–pile and pile-to-pile interactions. Comparisons with data available in literature are made to study the convergence and validate the model. An application to a realistic pile foundation is given to demonstrate the potential of the model to catch the dynamic behaviour of the soil–foundation system and the stress resultants in each pile.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.