To characterize natriuretic peptide receptor (NPr) gene expression in human tissues, we cloned portions of the cDNAs codifying for NPr with guanylyl cyclase activity (NPr-A and NPr-B) and without guanylyl cyclase activity (NPr-C). Total RNA was extracted from samples taken at surgery from normal human tissues. NPr-A and NPr-B cDNAs obtained from lung as well as NPr-C cDNA obtained from renal cortex were cloned, characterized, and used for comparative Northern analysis. NPr-A mRNA (approximately 4 kb) was most abundant in adipose tissue (8 patients) independently on the site of sampling, whereas it was approximately 2.5-fold and 5-fold less abundant, respectively, in kidney (either renal cortex or papilla from 3 patients) and adrenal (4 patients), known target tissues of natriuretic peptides. NPr-C mRNAs (approximately 7.7 and 6.8 kb) had a similar tissue distribution but the highest levels were found in renal tissue and only very low expression levels were found in adrenals (approximately 20-fold lower than renal cortex). The ratio of NPrA versus NPr-C mRNA levels were highest in adrenal and lowest in renal tissue. NPr-B mRNA (approximately 4 kb), which encodes the receptor for the C-type natriuretic peptide, had a different and wide tissue distribution, including expression in ileum and liver, with the highest levels in venous and prostatic tissue. These results indicate that, in humans, different patterns of NPr expression with different NPr-A/NPr-C mRNA level ratios, are present in known target tissues of natriuretic peptides. "Non-classic" target tissues, such as the adipose one, maximally expressed NPr-A and also NPr-C, suggesting that natriuretic peptides may have wider functional activities than those previously demonstrated

Expression of natriuretic peptides receptors in human adipose and other tissue

SARZANI, Riccardo;ESPINOSA, Emma;
1996

Abstract

To characterize natriuretic peptide receptor (NPr) gene expression in human tissues, we cloned portions of the cDNAs codifying for NPr with guanylyl cyclase activity (NPr-A and NPr-B) and without guanylyl cyclase activity (NPr-C). Total RNA was extracted from samples taken at surgery from normal human tissues. NPr-A and NPr-B cDNAs obtained from lung as well as NPr-C cDNA obtained from renal cortex were cloned, characterized, and used for comparative Northern analysis. NPr-A mRNA (approximately 4 kb) was most abundant in adipose tissue (8 patients) independently on the site of sampling, whereas it was approximately 2.5-fold and 5-fold less abundant, respectively, in kidney (either renal cortex or papilla from 3 patients) and adrenal (4 patients), known target tissues of natriuretic peptides. NPr-C mRNAs (approximately 7.7 and 6.8 kb) had a similar tissue distribution but the highest levels were found in renal tissue and only very low expression levels were found in adrenals (approximately 20-fold lower than renal cortex). The ratio of NPrA versus NPr-C mRNA levels were highest in adrenal and lowest in renal tissue. NPr-B mRNA (approximately 4 kb), which encodes the receptor for the C-type natriuretic peptide, had a different and wide tissue distribution, including expression in ileum and liver, with the highest levels in venous and prostatic tissue. These results indicate that, in humans, different patterns of NPr expression with different NPr-A/NPr-C mRNA level ratios, are present in known target tissues of natriuretic peptides. "Non-classic" target tissues, such as the adipose one, maximally expressed NPr-A and also NPr-C, suggesting that natriuretic peptides may have wider functional activities than those previously demonstrated
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11566/83685
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 46
  • Scopus 211
  • ???jsp.display-item.citation.isi??? 189
social impact