We recently developed a novel composite photopolymerizable material which allows the holographic recording of diffraction gratings with optimal optical and mechanical properties (high diffraction efficiency, transparency and spatial resolution, low shrinkage, long time stability). This material was successfully used to produce a low cost and easy to make optically pumped, organic distributed feedback laser, working on the first diffraction order of a high quality Bragg grating doped with a photoluminescent dye. Here we show the possibility of positioning these micrometer sized light sources at any point of a generic lab-on-a-chip device by borrowing experimental techniques commonly used in the fields of microfluidics and optofluidics. In particular, a microfluidic channel has been imprinted by soft lithography in a polydimethylsiloxane substrate in order to convey the photopolymerizable mixture to a particular area of the sample, where the laser device has been holographically recorded. A characterization of the lasing properties of this device has been carried out. The proposed approach allows a better confinement of the emitted light and overcomes some physical constrains (resolution, aspect ratio) of PDMS based microfluidic laser thus opening new possibilities for the complex integration of organic laser sources in lab-on-a-chip devices.

Microfluidic transport of photopolymerizable species for laser source integration in lab-on-a-chip photonic devices / Lucchetta, Daniele Eugenio; Castagna, R.; Vita, Francesco; Gianni, A.; Simoni, Francesco. - In: PHOTONICS AND NANOSTRUCTURES. - ISSN 1569-4410. - STAMPA. - 10:4(2012), pp. 575-580. [10.1016/j.photonics.2012.04.013]

Microfluidic transport of photopolymerizable species for laser source integration in lab-on-a-chip photonic devices

LUCCHETTA, Daniele Eugenio;VITA, Francesco;SIMONI, Francesco
2012-01-01

Abstract

We recently developed a novel composite photopolymerizable material which allows the holographic recording of diffraction gratings with optimal optical and mechanical properties (high diffraction efficiency, transparency and spatial resolution, low shrinkage, long time stability). This material was successfully used to produce a low cost and easy to make optically pumped, organic distributed feedback laser, working on the first diffraction order of a high quality Bragg grating doped with a photoluminescent dye. Here we show the possibility of positioning these micrometer sized light sources at any point of a generic lab-on-a-chip device by borrowing experimental techniques commonly used in the fields of microfluidics and optofluidics. In particular, a microfluidic channel has been imprinted by soft lithography in a polydimethylsiloxane substrate in order to convey the photopolymerizable mixture to a particular area of the sample, where the laser device has been holographically recorded. A characterization of the lasing properties of this device has been carried out. The proposed approach allows a better confinement of the emitted light and overcomes some physical constrains (resolution, aspect ratio) of PDMS based microfluidic laser thus opening new possibilities for the complex integration of organic laser sources in lab-on-a-chip devices.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/73665
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact