In Hansenula polymorpha, the expression of the nitrate assimilation metabolism is subjected to re-pression-derepression mechanisms triggered by reduced nitrogen compounds such as ammonium. To further our knowledge on the genetics of these regulatory mechanisms, a screening strategy for the isolation of mutants exhibiting nitrate reductase activities in the presence of reduced nitrogen compounds was set up. This strategy makes use of a nitrate+ methylamine mutant to isolate suppressors of its characteristic phenotype--the inability to grow on a nitrate plus methylamine medium. A total of 21 regulatory mutants were isolated with this strategy and grouped into five complementation classes. One of these mutants harbours the recessive mutation nmr1-1, which determines the derepression of the nitrate assimilation metabolism in media containing nitrate plus a repressing nitrogen source (ammonium, methylamine, glutamate, urea or aspartate). Therefore, nitrate reductase activities are detected in the presence of reduced nitrogen sources, as long as nitrate is also in the medium. Our data indicate that the processes of repression-derepression and induction are controlled by elements which are distinct. Furthermore, they indicate that Nmrlp is involved in repressing circuits which control not only the nitrate-utilisation pathway, but also other pathways which are necessary for the utilisation of nitrogen sources alternative to ammonium. Of considerable interest is the fact that our nmr1-1 mutant is derepressed in glutamate but not in glutamine. Since the phenotype of this mutant seems to exclude a glutamine synthetase defect, we suggest that glutamate (or a derivative of this compound) might be involved in signalling nitrogen metabolite repression in H. polymorpha. Thus, in H. polymorpha, a glutamine-dependent circuit may co-exist with a glutamine-independent circuit.

Nitrogen metabolite repression in Hansenula polymorpha: the nmr1-1 mutation / Serrani, F.; Berardi, Enrico Giuseppe Roberto. - In: CURRENT GENETICS. - ISSN 0172-8083. - 2001:(2001), pp. 243-250.

Nitrogen metabolite repression in Hansenula polymorpha: the nmr1-1 mutation.

BERARDI, Enrico Giuseppe Roberto
2001-01-01

Abstract

In Hansenula polymorpha, the expression of the nitrate assimilation metabolism is subjected to re-pression-derepression mechanisms triggered by reduced nitrogen compounds such as ammonium. To further our knowledge on the genetics of these regulatory mechanisms, a screening strategy for the isolation of mutants exhibiting nitrate reductase activities in the presence of reduced nitrogen compounds was set up. This strategy makes use of a nitrate+ methylamine mutant to isolate suppressors of its characteristic phenotype--the inability to grow on a nitrate plus methylamine medium. A total of 21 regulatory mutants were isolated with this strategy and grouped into five complementation classes. One of these mutants harbours the recessive mutation nmr1-1, which determines the derepression of the nitrate assimilation metabolism in media containing nitrate plus a repressing nitrogen source (ammonium, methylamine, glutamate, urea or aspartate). Therefore, nitrate reductase activities are detected in the presence of reduced nitrogen sources, as long as nitrate is also in the medium. Our data indicate that the processes of repression-derepression and induction are controlled by elements which are distinct. Furthermore, they indicate that Nmrlp is involved in repressing circuits which control not only the nitrate-utilisation pathway, but also other pathways which are necessary for the utilisation of nitrogen sources alternative to ammonium. Of considerable interest is the fact that our nmr1-1 mutant is derepressed in glutamate but not in glutamine. Since the phenotype of this mutant seems to exclude a glutamine synthetase defect, we suggest that glutamate (or a derivative of this compound) might be involved in signalling nitrogen metabolite repression in H. polymorpha. Thus, in H. polymorpha, a glutamine-dependent circuit may co-exist with a glutamine-independent circuit.
2001
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/72524
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact