Molecular profiling already exerts a profound influence on biomedical research and disease management. Microdissection technologies contribute to the molecular profiling of diseases, enabling investigators to probe genetic characteristics and dissect functional physiology within specific cell populations. Laser-capture microdissection (LCM), in particular, permits collation of genetic, epigenetic, and gene expression differences between normal, premalignant, and malignant cell populations. Its selectivity for specific cell populations promises to greatly improve the diagnosis and management of many human diseases. LCM has been extensively used in cancer research, contributing to the understanding of tumor biology by mutation detection, clonality analysis, epigenetic alteration assessment, gene expression profiling, proteomics, and metabolomics. In this review, we focus on LCM applications for DNA, RNA, and protein analysis in specific cell types and on commercially available LCM platforms. These analyses could clinically be used as aids to cancer diagnosis, clinical management, genomic profile studies, and targeted therapy. In this review, we also discuss the technical details of tissue preparation, analytical yields, tissue selection, and selected applications using LCM.

Laser-assisted Microdissection in Translational Research: Theory, Technical Considerations, and Future Applications / Cheng, L.; Zhang, S.; Maclennan, G. T.; Williamson, S. R.; Davidson, D. D.; Wang, M.; Jones, T. D.; Lopez Beltran, A.; Montironi, Rodolfo. - In: APPLIED IMMUNOHISTOCHEMISTRY AND MOLECULAR MORPHOLOGY. - ISSN 1541-2016. - STAMPA. - 21:1(2013), pp. 31-47. [10.1097/PAI.0b013e31824d0519]

Laser-assisted Microdissection in Translational Research: Theory, Technical Considerations, and Future Applications.

MONTIRONI, RODOLFO
2013-01-01

Abstract

Molecular profiling already exerts a profound influence on biomedical research and disease management. Microdissection technologies contribute to the molecular profiling of diseases, enabling investigators to probe genetic characteristics and dissect functional physiology within specific cell populations. Laser-capture microdissection (LCM), in particular, permits collation of genetic, epigenetic, and gene expression differences between normal, premalignant, and malignant cell populations. Its selectivity for specific cell populations promises to greatly improve the diagnosis and management of many human diseases. LCM has been extensively used in cancer research, contributing to the understanding of tumor biology by mutation detection, clonality analysis, epigenetic alteration assessment, gene expression profiling, proteomics, and metabolomics. In this review, we focus on LCM applications for DNA, RNA, and protein analysis in specific cell types and on commercially available LCM platforms. These analyses could clinically be used as aids to cancer diagnosis, clinical management, genomic profile studies, and targeted therapy. In this review, we also discuss the technical details of tissue preparation, analytical yields, tissue selection, and selected applications using LCM.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/70066
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 56
social impact