An equivalent circuit for discontinuities exciting evanescent accessible modes is proposed. The key feature of this equivalent circuit is its capability for simplification if a port relative to an accessible evanescent mode is matched, or connected to a very long line. Circuit drawing is simple, fast, and based on a regular polygon with as many susceptances as the sides and diagonals. Each side is connected with a line of electrical length θk to the terminal ports, and if the port refers to an evanescent accessible mode, a series reactance is added. This reactance is the key to the evanescent part of the circuit because it is able to cancel the effect of the evanescent mode if the relative port is matched or connected to a very long evanescent line, reducing the complexity of the circuit by one degree. With the help of the proposed equivalent circuit, we can define some approximating functions for the elements of a circuit representing a post in a waveguide, which can be used to speed up the optimization of complex structures, like filters or diplexers, based on posts.
An Equivalent Circuit for Discontinuities Exciting Evanescent Accessible Modes / Zappelli, Leonardo. - In: IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. - ISSN 0018-9480. - STAMPA. - 60:5(2012), pp. 1197-1209. [10.1109/TMTT.2012.2187533]
An Equivalent Circuit for Discontinuities Exciting Evanescent Accessible Modes
ZAPPELLI, Leonardo
2012-01-01
Abstract
An equivalent circuit for discontinuities exciting evanescent accessible modes is proposed. The key feature of this equivalent circuit is its capability for simplification if a port relative to an accessible evanescent mode is matched, or connected to a very long line. Circuit drawing is simple, fast, and based on a regular polygon with as many susceptances as the sides and diagonals. Each side is connected with a line of electrical length θk to the terminal ports, and if the port refers to an evanescent accessible mode, a series reactance is added. This reactance is the key to the evanescent part of the circuit because it is able to cancel the effect of the evanescent mode if the relative port is matched or connected to a very long evanescent line, reducing the complexity of the circuit by one degree. With the help of the proposed equivalent circuit, we can define some approximating functions for the elements of a circuit representing a post in a waveguide, which can be used to speed up the optimization of complex structures, like filters or diplexers, based on posts.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.