Significant reductions in vehicle fuel consumption can be obtained through a greater control of the thermal status of the engine, especially under partial load conditions. Different systems have been proposed to implement this concept, referred to as improved engine thermal management. The amount of fuel saved depends on the components and layout of the engine cooling plant and on the performance of its control system. In this work, a method was developed to calculate the theoretical minimum fuel consumption of a passenger car and used as a reference in comparing different engine cooling system concepts. A high-medium class car was taken as an example and simulated on standard cycles. Models for power train and cooling system components were developed and linked to simulate the vehicle. A preliminary analysis of the engine was performed using AVL's Boost program. The fuel consumption of the complete vehicle, equipped with a conventional cooling plant, was determined on standard cycles and compared with that of a vehicle equipped with a 'perfect' cooling system, to calculate the theoretical reduction in fuel consumption.

Numerical method for assessing the potential of smart engine thermal management: Application to a medium-upper segment passenger car / Caresana, Flavio; Bilancia, Michele; Bartolini, Carlo Maria. - In: APPLIED THERMAL ENGINEERING. - ISSN 1359-4311. - ELETTRONICO. - 31:16(2011), pp. 3559-3568. [10.1016/j.applthermaleng.2011.07.017]

Numerical method for assessing the potential of smart engine thermal management: Application to a medium-upper segment passenger car

CARESANA, FLAVIO;BILANCIA, MICHELE;BARTOLINI, Carlo Maria
2011-01-01

Abstract

Significant reductions in vehicle fuel consumption can be obtained through a greater control of the thermal status of the engine, especially under partial load conditions. Different systems have been proposed to implement this concept, referred to as improved engine thermal management. The amount of fuel saved depends on the components and layout of the engine cooling plant and on the performance of its control system. In this work, a method was developed to calculate the theoretical minimum fuel consumption of a passenger car and used as a reference in comparing different engine cooling system concepts. A high-medium class car was taken as an example and simulated on standard cycles. Models for power train and cooling system components were developed and linked to simulate the vehicle. A preliminary analysis of the engine was performed using AVL's Boost program. The fuel consumption of the complete vehicle, equipped with a conventional cooling plant, was determined on standard cycles and compared with that of a vehicle equipped with a 'perfect' cooling system, to calculate the theoretical reduction in fuel consumption.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/66571
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 32
social impact