Feature statistics normalization in the cepstral domain is one of the most performing approaches for robust automaticspeech and speaker recognition in noisy acoustic scenarios: feature coefficients are normalized by using suitable linear or nonlinear transformations in order to match the noisy speech statistics to the clean speech one. Histogram equalization (HEQ) belongs to such a category of algorithms and has proved to be effective on purpose and therefore taken here as reference. In this paper the presence of multi-channel acoustic channels is used to enhance the statistics modeling capabilities of the HEQ algorithm, by exploiting the availability of multiple noisy speech occurrences, with the aim of maximizing the effectiveness of the cepstra normalization process. Computer simulations based on the Aurora 2 database in speech and speaker recognition scenarios have shown that a significant recognition improvement with respect to the single-channel counterpart and other multi-channel techniques can be achieved confirming the effectiveness of the idea. The proposed algorithmic configuration has also been combined with the kernel estimation technique in order to further improve the speech recognition performances.

Environmental Robust Speech and Speaker Recognition through Multi-channel Histogram Equalization / Squartini, Stefano; Principi, Emanuele; Rotili, R.; Piazza, Francesco. - In: NEUROCOMPUTING. - ISSN 0925-2312. - Volume 78, Issue 1:(2012), pp. 111-120. [10.1016/j.neucom.2011.05.035]

Environmental Robust Speech and Speaker Recognition through Multi-channel Histogram Equalization

SQUARTINI, Stefano;PRINCIPI, EMANUELE;PIAZZA, Francesco
2012-01-01

Abstract

Feature statistics normalization in the cepstral domain is one of the most performing approaches for robust automaticspeech and speaker recognition in noisy acoustic scenarios: feature coefficients are normalized by using suitable linear or nonlinear transformations in order to match the noisy speech statistics to the clean speech one. Histogram equalization (HEQ) belongs to such a category of algorithms and has proved to be effective on purpose and therefore taken here as reference. In this paper the presence of multi-channel acoustic channels is used to enhance the statistics modeling capabilities of the HEQ algorithm, by exploiting the availability of multiple noisy speech occurrences, with the aim of maximizing the effectiveness of the cepstra normalization process. Computer simulations based on the Aurora 2 database in speech and speaker recognition scenarios have shown that a significant recognition improvement with respect to the single-channel counterpart and other multi-channel techniques can be achieved confirming the effectiveness of the idea. The proposed algorithmic configuration has also been combined with the kernel estimation technique in order to further improve the speech recognition performances.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/62532
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 15
social impact