The aim of the paper is the development of an accurate numerical model to compute the current density flowing through the heart of a virtual human body, and induced by an external electric or magnetic excitation. The model has been experimentally validated and then applied to investigate the main characteristics of the heart magnetic stimulation. This has been carried out by comparing the current density induced in the cardiac region by an external magnetic pulse with the corresponding quantity due to the more traditional electric source. Magnetic stimulation is studied because it offers some advantages: in fact, compared with the electrical stimulation, this technique is contactless and might allow the stimulation of a dressed patient. The design constraint of the whole system is represented by the current density, whose waveform and intensity are a compromise between the strength of the magnetic induction field and the pulse rise time.

A realistic model for the analysis of heart magnetic stimulation / Pastore, ANNA PIA; DE LEO, Alfredo; DE LEO, Roberto; G., Della Chiara; MARIANI PRIMIANI, Valter; Moglie, Franco; Cerri, Graziano. - In: IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. - ISSN 0018-9294. - 58:2(2011), pp. 291-300. [10.1109/TBME.2010.2064774]

A realistic model for the analysis of heart magnetic stimulation

PASTORE, ANNA PIA;DE LEO, ALFREDO;DE LEO, Roberto;MARIANI PRIMIANI, Valter;MOGLIE, FRANCO;CERRI, GRAZIANO
2011-01-01

Abstract

The aim of the paper is the development of an accurate numerical model to compute the current density flowing through the heart of a virtual human body, and induced by an external electric or magnetic excitation. The model has been experimentally validated and then applied to investigate the main characteristics of the heart magnetic stimulation. This has been carried out by comparing the current density induced in the cardiac region by an external magnetic pulse with the corresponding quantity due to the more traditional electric source. Magnetic stimulation is studied because it offers some advantages: in fact, compared with the electrical stimulation, this technique is contactless and might allow the stimulation of a dressed patient. The design constraint of the whole system is represented by the current density, whose waveform and intensity are a compromise between the strength of the magnetic induction field and the pulse rise time.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/54452
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact