In order to gain insights on the function of the cellular prion protein (PrP(C)) sleep and the levels of the stress hormones corticosterone (CORT) and the adrenocorticotropic hormone (ACTH) before and after sleep deprivation (SD) were compared in two wild type (WT) mice strains and the following three PrP(C) transgenic lines: mice null for PrP(C) (mPrP(0/0)) and mice with specific and central expression of PrP in neurons (NSE-HPrP/mPrP(0/0)) or in glia cells (GFAP-HPrP/mPrP(0/0)). After SD mPrP(0/0) mice showed a larger degree of sleep fragmentation and of latency to enter rapid eye movement (REM) and non-REM sleep (NREM) than WT. During sleep recovery, the amount of NREM sleep and the slow-wave activity (SWA) were reduced in mPrP(0/0) mice. After SD, CORT and ACTH levels have distinct patterns in WT and mPrP(0/0). The NREM and SWA deficit was restored in NSE-HPrP/mPrP(0/0) mice but not in GFAP-HPrP/mPrP(0/0). Hormonal profile was only partially restored in NSE-HPrP/mPrP(0/0) mice and was similar to that of mPrP(0/0) and GFAP-HPrP/mPrP(0/0) mice. These findings demonstrate that neuronal, but not non-neuronal, PrP(C) is involved in sleep homeostasis and sleep continuity. They also suggest that neuronal PrP(c)-dependent hormonal regulation of HPA axis may contribute to the sleep homeostasis.

Contributions of neuronal prion protein on sleep recovery and stress response following sleep deprivation / M., Sánchez Alavez; B., Conti; Moroncini, Gianluca; J. R., Criado. - In: BRAIN RESEARCH. - ISSN 0006-8993. - STAMPA. - 1158:1(2007), pp. 71-80. [10.1016/j.brainres.2007.05.010]

Contributions of neuronal prion protein on sleep recovery and stress response following sleep deprivation.

MORONCINI, Gianluca;
2007-01-01

Abstract

In order to gain insights on the function of the cellular prion protein (PrP(C)) sleep and the levels of the stress hormones corticosterone (CORT) and the adrenocorticotropic hormone (ACTH) before and after sleep deprivation (SD) were compared in two wild type (WT) mice strains and the following three PrP(C) transgenic lines: mice null for PrP(C) (mPrP(0/0)) and mice with specific and central expression of PrP in neurons (NSE-HPrP/mPrP(0/0)) or in glia cells (GFAP-HPrP/mPrP(0/0)). After SD mPrP(0/0) mice showed a larger degree of sleep fragmentation and of latency to enter rapid eye movement (REM) and non-REM sleep (NREM) than WT. During sleep recovery, the amount of NREM sleep and the slow-wave activity (SWA) were reduced in mPrP(0/0) mice. After SD, CORT and ACTH levels have distinct patterns in WT and mPrP(0/0). The NREM and SWA deficit was restored in NSE-HPrP/mPrP(0/0) mice but not in GFAP-HPrP/mPrP(0/0). Hormonal profile was only partially restored in NSE-HPrP/mPrP(0/0) mice and was similar to that of mPrP(0/0) and GFAP-HPrP/mPrP(0/0) mice. These findings demonstrate that neuronal, but not non-neuronal, PrP(C) is involved in sleep homeostasis and sleep continuity. They also suggest that neuronal PrP(c)-dependent hormonal regulation of HPA axis may contribute to the sleep homeostasis.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/53898
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact