This paper presents a multicomponent sinusoidal model of speech signals, obtained through a rigorous mathematical formulation that ensures an asymptotically exact reconstruction of these nonstationary signals, despite the presence of transients, voiced segments, or unvoiced segments. This result has been obtained by means of the iterated use of the Hilbert transform, and the convergence properties of the proposed method have been both analytically investigated and empirically tested. Finally, an adaptive segmentation algorithm used to accurately compute instantaneous frequencies from unwrapped phases, suited to complete the proposed AM-FM model, is presented.

Asymptotically exact AM-FM decomposition based on iterated Hilbert transform

BIAGETTI, Giorgio;CRIPPA, Paolo;TURCHETTI, Claudio
2005-01-01

Abstract

This paper presents a multicomponent sinusoidal model of speech signals, obtained through a rigorous mathematical formulation that ensures an asymptotically exact reconstruction of these nonstationary signals, despite the presence of transients, voiced segments, or unvoiced segments. This result has been obtained by means of the iterated use of the Hilbert transform, and the convergence properties of the proposed method have been both analytically investigated and empirically tested. Finally, an adaptive segmentation algorithm used to accurately compute instantaneous frequencies from unwrapped phases, suited to complete the proposed AM-FM model, is presented.
978-1-60423-448-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/53747
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact