Using variational methods, we show the existence of a homoclinic orbit for the Duffing equation $-ddot u+u=a(t)|u|^{p-1}u$, where $p>1$ and $ain L^infty(R)$ is a positive function of the form $a=a_0+a_infty$ with $a_infty$ periodic, and $a_0(t) o 0$ as $t opminfty$ satisfying suitable conditions. Under the same assumptions on $a$, we also prove that the perturbed equation $-ddot u+u=a(t)|u|^{p-1}u+alpha(t)g(u)$ admits a homoclinic orbit whenever $gin C^1(R)$ satisfies $g(u)=O(u)$ as $u o 0$ and $alphain L^infty(R)$, $alpha(t) o 0$ as $t opminfty$ and $|alpha|_{L^infty}$ is sufficiently small.

On the existence of homoclinic orbits for the asymptotically periodic Duffing Equation / Alessio, FRANCESCA GEMMA; Caldiroli, P.; Montecchiari, Piero. - In: TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS. - ISSN 1230-3429. - STAMPA. - 12:(1998), pp. 275-292.

On the existence of homoclinic orbits for the asymptotically periodic Duffing Equation

ALESSIO, FRANCESCA GEMMA;MONTECCHIARI, Piero
1998-01-01

Abstract

Using variational methods, we show the existence of a homoclinic orbit for the Duffing equation $-ddot u+u=a(t)|u|^{p-1}u$, where $p>1$ and $ain L^infty(R)$ is a positive function of the form $a=a_0+a_infty$ with $a_infty$ periodic, and $a_0(t) o 0$ as $t opminfty$ satisfying suitable conditions. Under the same assumptions on $a$, we also prove that the perturbed equation $-ddot u+u=a(t)|u|^{p-1}u+alpha(t)g(u)$ admits a homoclinic orbit whenever $gin C^1(R)$ satisfies $g(u)=O(u)$ as $u o 0$ and $alphain L^infty(R)$, $alpha(t) o 0$ as $t opminfty$ and $|alpha|_{L^infty}$ is sufficiently small.
1998
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/53421
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact