We consider a class of semilinear elliptic equations of the form $$-\Delta u(x,y)+a(\varepsilon x)W'(u(x,y))=0,\quad (x,y)\in\R^{2}$$ where $\e>0$, $a:\R\to\R$ is an almost periodic, positive function and $W:\R\to\R$ is modeled on the classical two well Ginzburg-Landau potential $W(s)=(s^{2}-1)^{2}$. We show via variational methods that if $\e$ is sufficiently small and $a$ is not constant then the equation admits infinitely many two dimensional entire solutions verifying the asymptotic conditions $u(x,y)\to\pm 1$ as $x\to\pm\infty$ uniformly with respect to $y\in\R$.

Multiplicity of entire solutions for a class of almost periodic Allen-Cahn type equations / Alessio, FRANCESCA GEMMA; Montecchiari, Piero. - In: ADVANCED NONLINEAR STUDIES. - ISSN 1536-1365. - STAMPA. - 5:4(2005), pp. 515-549.

Multiplicity of entire solutions for a class of almost periodic Allen-Cahn type equations

ALESSIO, FRANCESCA GEMMA;MONTECCHIARI, Piero
2005-01-01

Abstract

We consider a class of semilinear elliptic equations of the form $$-\Delta u(x,y)+a(\varepsilon x)W'(u(x,y))=0,\quad (x,y)\in\R^{2}$$ where $\e>0$, $a:\R\to\R$ is an almost periodic, positive function and $W:\R\to\R$ is modeled on the classical two well Ginzburg-Landau potential $W(s)=(s^{2}-1)^{2}$. We show via variational methods that if $\e$ is sufficiently small and $a$ is not constant then the equation admits infinitely many two dimensional entire solutions verifying the asymptotic conditions $u(x,y)\to\pm 1$ as $x\to\pm\infty$ uniformly with respect to $y\in\R$.
2005
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/53379
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact